13.已知偶函數(shù)f(x)在[0,+∞)上單調(diào)遞減,則f(1)和f(-6)的大小關(guān)系為(  )
A.f(1)<f(-6)B.f(1)>f(-6)
C.f(1)=f(-6)D.f(1),f(-6)大小關(guān)系不確定

分析 根據(jù)f(x)為偶函數(shù),在[0,+∞)上單調(diào)遞減,可得f(1)>f(6)=f(-6),從而得出結(jié)論.

解答 解:由偶函數(shù)的性質(zhì)知f(-6)=f(6),
又因?yàn)閒(x)在[0,+∞)上單調(diào)遞減,所以f(1)>f(6)=f(-6),
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)的奇偶性、單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)f(x)=ax2+bx+3在x=2時(shí)取得最小值,且函數(shù)f(x)的圖象在x軸上截得的線段長(zhǎng)為2.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=f(x)-mx的一個(gè)零點(diǎn)在區(qū)間(0,2)上,另一個(gè)零點(diǎn)在區(qū)間(2,3)上,求實(shí)數(shù)m的取值范圍.
(3)當(dāng)x∈[t,t+1]時(shí),函數(shù)f(x)的最小值為-$\frac{1}{2}$,求實(shí)數(shù)t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)函數(shù)f(x)=x2+4x+c,則下列關(guān)系中正確的是( 。
A.f(1)<f(0)<f(-2)B.f(1)>f(0)>f(-2)C.f(0)>f(1)>f(-2)D.f(0)<f(-2)<f(1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,若$\frac{cosA}{cosB}=\frac{a}$,則△ABC的形狀是( 。
A.等腰三角形B.鈍角三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={2,4,6},B={1,3,4,5}.則A∩B=(  )
A.{2,4,6}B.{1,3,5}C.{4,5}D.{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若xy≠0,則$\sqrt{4{x^2}{y^3}}=-2xy\sqrt{y}$成立的條件是x<0且y>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=loga(${\sqrt{{x^2}+1}$+x)(其中a>1).
(1)判斷函數(shù)y=f(x)的奇偶性,并說(shuō)明理由;
(2)判斷$\frac{f(m)+f(n)}{m+n}$(其中m,n∈R,且m+n≠0)的正負(fù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖的程序框圖,如果輸入的N是9,那么輸出的S是(  )
A.2B.$\frac{1}{2}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.命題“?x∈R,x2-2≤0”的否定是?x∈R,x2-2>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案