9.?dāng)?shù)列{an}的前n項(xiàng)和Sn=33n-n2
(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)求證:{an}是等差數(shù)列.

分析 (1)根據(jù)≥2時(shí),an=Sn-Sn-1,即可求出通項(xiàng)公式,
(2)再利用定義證明即可.

解答 解 (1)當(dāng)n≥2時(shí),an=Sn-Sn-1=34-2n,
又當(dāng)n=1時(shí),a1=S1=32=34-2×1滿足an=34-2n.
故{an}的通項(xiàng)為an=34-2n.
(2)證明:an+1-an=34-2(n+1)-(34-2n)=-2.
故數(shù)列{an}是以32為首項(xiàng),-2為公差的等差數(shù)列.

點(diǎn)評(píng) 本題考查了數(shù)列的遞推關(guān)系式,以及等差數(shù)列的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.定義:從一個(gè)數(shù)列{an}中抽取若干項(xiàng)(不少于三項(xiàng))按其在{an}中的次序排列的一列數(shù)叫做{an}的子數(shù)列,成等差(等比)的子數(shù)列叫做{an}的等差(等比)子列.
(1)記數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=n2,求證:數(shù)列{a3n}是數(shù)列{an}的等差子列;
(2)設(shè)等差數(shù)列{an}的各項(xiàng)均為整數(shù),公差d≠0,a5=6,若數(shù)列a3,a5,a${\;}_{{n}_{1}}$是數(shù)列{an}的等比子列,求n1的值;
(3)設(shè)數(shù)列{an}是各項(xiàng)均為實(shí)數(shù)的等比數(shù)列,且公比q≠1,若數(shù)列{an}存在無窮多項(xiàng)的等差子列,求公比q的所有值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$y=|{sin({2x-\frac{π}{6}})}|$,以下說法正確的是( 。
A.函數(shù)的最小正周期為$\frac{π}{4}$B.函數(shù)是偶函數(shù)
C.函數(shù)圖象的一條對(duì)稱軸為$x=\frac{π}{3}$D.函數(shù)在$[{\frac{2π}{3},\frac{5π}{6}}]$上為減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知復(fù)數(shù)${z_1}=sinx+λi,{z_2}=({sinx+\sqrt{3}cosx})-i$(λ,x∈R,i為虛數(shù)單位).
(1)若2z1=i•z2,且$x∈({0,\frac{π}{2}})$,求x與λ的值;
(2)設(shè)復(fù)數(shù)z1,z2在復(fù)平面上對(duì)應(yīng)的向量分別為$\overrightarrow{O{Z_1}},\overrightarrow{O{Z_2}}$,且$\overrightarrow{O{Z_1}}⊥\overrightarrow{O{Z_2}}$,λ=f(x),求f(x)的最小正周期和單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知以點(diǎn)C為圓心的圓經(jīng)過點(diǎn)A(-1,2)和點(diǎn)B(3,4),且圓心在直線x+3y-15=0上.
(1)求圓C的方程;
(2)設(shè)點(diǎn)P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.為了解某社區(qū)物業(yè)部門對(duì)本小區(qū)業(yè)主的服務(wù)情況,隨機(jī)訪問了100位業(yè)主,根據(jù)這100位業(yè)主對(duì)物業(yè)部門的評(píng)分情況,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].由于某種原因,有個(gè)數(shù)據(jù)出現(xiàn)污損,請(qǐng)根據(jù)圖中其他數(shù)據(jù)分析,評(píng)分不小于80分的業(yè)主有( 。┪唬
A.43B.44C.45D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓${(x-1)^2}+{y^2}=\frac{3}{4}$的一條切線y=kx與雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$沒有公共點(diǎn),則雙曲線C的離心率的取值范圍是( 。
A.$(1,\sqrt{3})$B.(1,2]C.$(\sqrt{3},+∞)$D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列每對(duì)向量垂直的有( 。⿲(duì)
(1)(3,4,0),(0,0,5)
(2)(3,1,3),(1,0,-1)
(3)(-2,1,3),(6,-5,7)
(4)(6,0,12),(6,-5,7)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)復(fù)數(shù)z=1+$\frac{2}{i}$(其中i為虛數(shù)單位,$\overline{z}$為z的共軛復(fù)數(shù)),則z2+3$\overline{z}$的虛部為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案