【題目】某旅行社為調(diào)查市民喜歡“人文景觀”景點是否與年齡有關,隨機抽取了50名市民,得到數(shù)據(jù)如下表:
喜歡 | 不喜歡 | 合計 | |
大于40歲 | 20 | 5 | 25 |
20歲至40歲 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
(1)判斷是否有99.5%的把握認為喜歡“人文景觀”景點與年齡有關?(保留小數(shù)點后3位)
(2)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機抽取3人作進一步調(diào)查,將這3位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
科目:高中數(shù)學 來源: 題型:
【題目】某高科技公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的每天固定成本為元,每生產(chǎn)件,需另投入成本為元,每件產(chǎn)品售價為元(該新產(chǎn)品在市場上供不應求可全部賣完).
(1)寫出每天利潤關于每天產(chǎn)量的函數(shù)解析式;
(2)當每天產(chǎn)量為多少件時,該公司在這一新產(chǎn)品的生產(chǎn)中每天所獲利潤最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
()當時,求此函數(shù)對應的曲線在處的切線方程.
()求函數(shù)的單調(diào)區(qū)間.
()對,不等式恒成立,求的取值范圍.
【答案】();()見解析;()當時, ,當時
【解析】試題分析:(1)利用導數(shù)的意義,求得切線方程為;(2)求導得,通過, , 分類討論,得到單調(diào)區(qū)間;(3)分離參數(shù)法,得到,通過求導,得, .
試題解析:
()當時, ,
∴, ,
,∴切線方程.
()
.
令,則或,
當時, 在, 上為增函數(shù).
在上為減函數(shù),
當時, 在上為增函數(shù),
當時, 在, 上為單調(diào)遞增,
在上單調(diào)遞減.
()當時, ,
當時,由得
,對恒成立.
設,則
,
令得或,
極小 |
,∴, .
點睛:本題考查導數(shù)在函數(shù)綜合題型中的應用。含參的函數(shù)單調(diào)性討論,考查學生的分類討論能力,本題中,結(jié)合導函數(shù)的形式,分類討論;含參的恒成立問題,一般采取分離參數(shù)法,解決恒成立。
【題型】解答題
【結(jié)束】
20
【題目】已知集合,集合且滿足:
, , 與恰有一個成立.對于定義 .
()若, , , ,求的值及的最大值.
()取, , , 中任意刪去兩個數(shù),即剩下的個數(shù)的和為,求證: .
()對于滿足的每一個集合,集合中是否都存在三個不同的元素, , ,使得恒成立,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正方體的棱長為1,線段上有兩個動點,且,現(xiàn)有如下四個結(jié)論:
;平面;
三棱錐的體積為定值;異面直線所成的角為定值,
其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)證明函數(shù)為奇函數(shù);
(2)判斷函數(shù)的單調(diào)性(無需證明),并求函數(shù)的值域;
(3)是否存在實數(shù),使得的最大值為?若存在,求出的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關系是“平行相交”,則實數(shù)b的取值范圍為 ( )
A. (, ) B. (0, )
C. (0, ) D. (, )∪(,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中,內(nèi)角、、所對的邊分別是、、,不等式對一切實數(shù)恒成立.
(1)求的取值范圍;
(2)當取最大值,且的周長為時,求面積的最大值,并指出面積取最大值時的形狀.(參考知識:已知、,;、,)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中有五張卡片,其中紅色卡片三張,標號分別為1,2,3;藍色卡片兩張,標號分別為1,2.
(Ⅰ)從以上五張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率;
(Ⅱ)現(xiàn)袋中再放入一張標號為0的綠色卡片,從這六張卡片中任取兩張,求這兩張卡片顏色不同且標號之和小于4的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com