【題目】設(shè)函數(shù).

1)若,求函數(shù)處的切線方程;

2)若函數(shù)在處有兩個(gè)極值點(diǎn),其中.

i)求實(shí)數(shù)的取值范圍;

ii)若e為自然對(duì)數(shù)的底數(shù)),求的最大值.

【答案】;(2)(i;(ii.

【解析】

1)求出的值,利用點(diǎn)斜式可得出所求切線的方程;

2)(i)求得,從而可知方程上有兩個(gè)不等的實(shí)根,可得出關(guān)于實(shí)數(shù)的不等式組,即可求得實(shí)數(shù)的取值范圍;

ii)由題知、是兩個(gè)極值點(diǎn),結(jié)合韋達(dá)定理,得到關(guān)于、的關(guān)系式,再用換元,構(gòu)造關(guān)于的函數(shù),求出函數(shù)的最大值.

1)若,,,則,,

此時(shí),函數(shù)處的切線方程為,即;

2)(i,

由題意可知,關(guān)于的方程上有兩個(gè)不等的實(shí)根,

所以,,解得.

因此,實(shí)數(shù)的取值范圍是

ii)由(i)得,,

,則,令,其中.

,

所以,函數(shù)上單調(diào)遞減,.

因此,當(dāng)時(shí),的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,已知,,.是線段的中點(diǎn).

1)求直線與平面所成角的正弦值;

2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)生想在物理、化學(xué)、生物、政治、歷史、地理、技術(shù)這七門(mén)課程中選三門(mén)作為選考科目,下列說(shuō)法錯(cuò)誤的是(

A.若任意選擇三門(mén)課程,選法總數(shù)為

B.若物理和化學(xué)至少選一門(mén),選法總數(shù)為

C.若物理和歷史不能同時(shí)選,選法總數(shù)為

D.若物理和化學(xué)至少選一門(mén),且物理和歷史不能同時(shí)選,選法總數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)在區(qū)間內(nèi)是單調(diào)遞增函數(shù),求實(shí)數(shù)a的取值范圍;

2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:.(注:為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn),滿(mǎn)足.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)橢圓右焦點(diǎn)的直線與橢圓交于不同的兩點(diǎn),求的內(nèi)切圓的半徑的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對(duì)產(chǎn)品做檢驗(yàn),廠家將一批產(chǎn)品發(fā)給商家時(shí),商家按合同規(guī)定也需隨機(jī)抽取一定數(shù)量的產(chǎn)品做檢驗(yàn),以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐校ㄒ暈閿?shù)量足夠多)的每件產(chǎn)品合格的概率為 從中任意取出 3件進(jìn)行檢驗(yàn),求至少有 件是合格品的概率;

2)若廠家發(fā)給商家 件產(chǎn)品,其中有不合格,按合同規(guī)定 商家從這 件產(chǎn)品中任取件,都進(jìn)行檢驗(yàn),只有 件都合格時(shí)才接收這批產(chǎn)品,否則拒收.求該商家可能檢驗(yàn)出的不合格產(chǎn)品的件數(shù)ξ的分布列,并求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E1(a>0,b>0)的右頂點(diǎn)為A,O為坐標(biāo)原點(diǎn),MOA的中點(diǎn),若以AM為直徑的圓與E的漸近線相切,則雙曲線E的離心率等于( )

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中國(guó),不僅是購(gòu)物,而且從共享單車(chē)到醫(yī)院掛號(hào)再到公共繳費(fèi),日常生活中幾乎全部領(lǐng)域都支持手機(jī)支付.出門(mén)不帶現(xiàn)金的人數(shù)正在迅速增加。中國(guó)人民大學(xué)和法國(guó)調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶(hù),從中隨機(jī)抽取了60名,統(tǒng)計(jì)他們出門(mén)隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機(jī)支付族”,其他為“非手機(jī)支付族”.

1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補(bǔ)充完整,并判斷有多大的把握認(rèn)為“手機(jī)支付族”與“性別”有關(guān)?

2)用樣本估計(jì)總體,若從騰訊服務(wù)的用戶(hù)中隨機(jī)抽取3位女性用戶(hù),這3位用戶(hù)中“手機(jī)支付族”的人數(shù)為,求隨機(jī)變量的期望和方差;

3)某商場(chǎng)為了推廣手機(jī)支付,特推出兩種優(yōu)惠方案,方案一:手機(jī)支付消費(fèi)每滿(mǎn)1000元可直減100元;方案二:手機(jī)支付消費(fèi)每滿(mǎn)1000元可抽獎(jiǎng)2次,每次中獎(jiǎng)的概率同為,且每次抽獎(jiǎng)互不影響,中獎(jiǎng)一次打9折,中獎(jiǎng)兩次打8.5.如果你打算用手機(jī)支付購(gòu)買(mǎi)某樣價(jià)值1200元的商品,請(qǐng)從實(shí)際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)設(shè),若對(duì)任意的,恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案