18.在平面直角坐標系中,點P是直線l:x=-1上一動點,點F(1,0),點Q為PF的中點,點M滿足MQ⊥PF且$\overrightarrow{MP}$=λ$\overrightarrow{OF}$,過點M作圓(x-3)2+y2=2的切線,切點分別A,B,則|AB|的最小值為( 。
A.3B.$\frac{3}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

分析 由題意首先求出M的軌跡方程,然后在M滿足的曲線上設點,只要求曲線上的點到圓心的距離的最小值,即可得到|AB|的最小值.

解答 解:設M(x,y),由$\overrightarrow{MP}$=λ$\overrightarrow{OF}$,得P(-1,y),
由點Q為PF的中點知 Q(0,$\frac{y}{2}$),
又∵QM⊥PF,∴QM、PF斜率乘積為-1,
即$\frac{y-\frac{y}{2}}{x}•\frac{y}{-1-1}=-1$,
得:y2=4x,
∴M的軌跡是拋物線,
設M(y2,2y),到圓心(3,0)的距離為d,d2=(y2-3)2+4y2=y4-2y2+9=(y2-1)2+8,
∴y2=1時,dmin=$2\sqrt{2}$,此時的切線長為$\sqrt{8-2}=\sqrt{6}$,
∴|AB|的最小值為2×$\frac{\sqrt{6}×\sqrt{2}}{2\sqrt{2}}$=$\sqrt{6}$.
故選:D.

點評 本題考查了拋物線軌跡方程的求法以及與圓相關的距離的最小值求法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

9.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD:AD=4:1,求tan∠CBD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.點P是圓(x+1)2+(y-2)2=2上任一點,則點P到直線x-y-1=0距離的最大值為( 。
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$2+2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在直三棱柱ABC-A1BC的底面△ABC中,CA=CB=2,∠BCA=90°,棱AA1=4,M.N分別是A1B1,A1A的中點.
(1)求證:A1B⊥C1M;
(2)設直線BN與平面ABC1所成的角為θ,求sinθ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,側棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB的中點.
(Ⅰ)求證:AM∥平面PCD.
(Ⅱ)設點N是線段CD上一動點,當直線MN于平面PAB所成的角最大時,求DN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{ax+b}{{{x^2}+1}}$在點(-1,f(-1))處的切線方程為x+y+3=0
(1)求函數(shù)f(x)的解析式;
(2)設g(x)=ln(x-1),求證:2g(x)<(x2+1)f(x)在x∈(1,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ax2-x+xlnx,其中a∈R.
(Ⅰ)若曲線y=f(x)在點(1,f(1))處的切線垂直于直線x-2y-3=0,求a的值;
(Ⅱ)若f(x)≤0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題中正確的是?( 。
A.正方形的直觀圖是正方形?
B.平行四邊形的直觀圖是平行四邊形?
C.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱
D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設p,q是兩個命題,若p∧(¬q)是真命題,那么( 。
A.p是真命題且q是假命題B.p是真命題且q是真命題
C.p是假命題且q是真命題D.p是假命題且q是假命題

查看答案和解析>>

同步練習冊答案