9.在Rt△ACB中,∠C=90°,CD⊥AB于D,若BD:AD=4:1,求tan∠CBD的值.

分析 根據(jù)△ACD∽△CBD得出CD與BD的關(guān)系,從而得出tan∠CBD的值.

解答 解:∵∠ACB=∠ADC=90°,
∴△ACD∽△CBD.
設AD=a,則BD=4a.
∴$\frac{AD}{CD}=\frac{CD}{BD}$,∴CD=$\sqrt{AD•BD}$=2a.
∴tan∠CBD=$\frac{CD}{BD}$=$\frac{1}{2}$.

點評 本題考查了相似三角形的性質(zhì),屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知i是虛數(shù)單位,z=$\frac{2+i}{i}$,則z的模|z|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.甲、乙兩人參加一次英語口語考試,已知在試題庫中任取一題,甲能答對的概率為$\frac{2}{3}$,乙能答對的概率為$\frac{1}{2}$,規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才算合格.則甲、乙兩人中至少有一人考試合格的概率為$\frac{47}{54}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.平面區(qū)域$\left\{\begin{array}{l}{x+y≥0}\\{2x-y≤0}\\{x-y+2≥0}\end{array}\right.$的面積是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在正方體的12條面對角線和4條體對角線中隨機選取兩條對角線,則這兩條對角線構(gòu)成異面直線的概率為( 。
A.$\frac{1}{5}$B.$\frac{1}{4}$C.$\frac{7}{15}$D.$\frac{9}{20}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知△ABC中,AB+2AC=12,BC=6,點D為邊BC的中點,則中線AD長的最小值為$\frac{3\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知α∈(0,$\frac{π}{2}$),且2sin2α-sinα•cosα-3cos2α=0,求$\frac{sin(α-\frac{π}{2})cos(\frac{3π}{2}+α)tan(π-α)}{sin(-α)sin(-α-π)}$+tan(π+α)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知函數(shù)f(x)=sin2(x+$\frac{π}{4}$)+cos2x-1.
(1)求f(x)的最小正周期、振幅、初相、對稱中心;
(2)用五點法作出它一個周期內(nèi)的圖象;
(3)y=f(x)的圖象可經(jīng)過怎樣的變換得到y(tǒng)=sinx的圖象;
(4)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在平面直角坐標系中,點P是直線l:x=-1上一動點,點F(1,0),點Q為PF的中點,點M滿足MQ⊥PF且$\overrightarrow{MP}$=λ$\overrightarrow{OF}$,過點M作圓(x-3)2+y2=2的切線,切點分別A,B,則|AB|的最小值為( 。
A.3B.$\frac{3}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{6}$

查看答案和解析>>

同步練習冊答案