已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/7/1lrfx2.gif" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍。

解:(1)令,由題設(shè)知需取遍內(nèi)任意值,
所以解得   
(2)對(duì)一切恒成立且
對(duì)一切恒成立            
,當(dāng)時(shí),取得最小值為,
所以 

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知函數(shù)的圖象經(jīng)過(guò)點(diǎn),記
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),若,求的最小值;
(3)求使不等式對(duì)一切均成立的最大實(shí)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

.計(jì)算(1) (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車
流速度v(單位:千米/小時(shí))是車流密度 x(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)
到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速
度為60千米/小時(shí).研究表明當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算: 
(Ⅱ)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司生產(chǎn)陶瓷,根據(jù)歷年的情況可知,生產(chǎn)陶瓷每天的固定成本為14000元,每生產(chǎn)一件產(chǎn)品,成本增加210元.已知該產(chǎn)品的日銷售量與產(chǎn)量之間的關(guān)系式為
,每件產(chǎn)品的售價(jià)與產(chǎn)量之間的關(guān)系式為

(Ⅰ)寫出該陶瓷廠的日銷售利潤(rùn)與產(chǎn)量之間的關(guān)系式;
(Ⅱ)若要使得日銷售利潤(rùn)最大,每天該生產(chǎn)多少件產(chǎn)品,并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(13分)函數(shù)在區(qū)間上有最大值,求實(shí)數(shù)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知二次函數(shù)=,且不等式的解集為
(1)求的解析式
(2)若不等式對(duì)于恒成立,求實(shí)數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(8分)計(jì)算: 

查看答案和解析>>

同步練習(xí)冊(cè)答案