【題目】某工廠有一個容量為300噸的水塔,每天從早上6時起到晚上10時止供應(yīng)該廠的生產(chǎn)和生活用水.已知該廠生活用水為每小時10噸,生產(chǎn)用水量(噸)與時間(單位:小時,且規(guī)定早上6)的函數(shù)關(guān)系式為:,水塔的進水量分為10級,第一級每小時進水10噸,以后每提高一級,每小時進水量就增加10.若某天水塔原有水100噸,在開始供水的同時打開進水管.

1)若進水量選擇為級,水塔中剩余水量為噸,試寫出的函數(shù)關(guān)系式;

2)如何選擇進水量,既能始終保證該廠的用水(水塔中水不空)又不會使水溢出?

【答案】1,,;(2)選擇第4

【解析】

1)根據(jù)題意,即可求出剩余水量為噸與進水量選擇為級之間的函數(shù)關(guān)系;

2)由,可得,分離出,利用配方法,根據(jù)二次函數(shù)的性質(zhì)求解即可.

(1) 設(shè)進水量選第級,則小時后水塔中水的剩余量為:,

.

(2)根據(jù)題意,進水級,所以.

由左邊得,

時,有最大值3.5.所以.

由右邊得,當時,有最小值4.75,所以.

綜合上述,進水量應(yīng)選為第4.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在一次演唱會上共10 名演員(每名演員都會唱歌或跳舞),其中7人能唱歌,6人會跳舞.

1)問既能唱歌又會跳舞的有幾人?

2)現(xiàn)要選出一個2人唱歌2人伴舞的節(jié)目,有多少種選派方法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某醫(yī)藥研究所開發(fā)的一種新藥,如果成年人按規(guī)定的劑量服用,據(jù)監(jiān)測:服藥后每毫升血液中的含藥量y(微克)與時間t(小時)之間近似滿足如圖所示的曲線.

(1)寫出第一次服藥后,y與t之間的函數(shù)關(guān)系式y(tǒng)=f(t);

(2)據(jù)進一步測定:每毫升血液中含藥量不少于0.25微克時,治療有效.求服藥一次后治療有效的時間是多長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,數(shù)列滿足,且.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數(shù)方程為 為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線,的公共點為.

求直線的斜率;

Ⅱ)若點分別為曲線,上的動點,當取最大值時,求四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定一個由個小正方形拼成的棋盤形方格,這些小正方形的顏色黑白相間(如圖).

現(xiàn)定義一種運算A:把位于第i行的所有小正方形和位于第j列的所有小正方形都換成相反的顏色,即黑色的小正方形換成白色的,白色的小正方形換成黑色的,這里.我們把A稱為在位于第i行第j列上的小正方形上的一次運算.試問:能否經(jīng)過若干次上述運算把棋盤上的所有小正方形全部換成同一種顏色?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=Asin(wx+j)(A0,w0,-j,x∈R)的部分圖象如圖所示:,

(1)求函數(shù)y=f(x)的解析式;(2)x∈時,求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高中為了了解高三學生每天自主參加體育鍛煉的情況,隨機抽取了100名學生進行調(diào)查,其中女生有55.下面是根據(jù)調(diào)查結(jié)果繪制的學生自主參加體育鍛煉時間的頻率分布直方圖:

將每天自主參加體育鍛煉時間不低于40分鐘的學生稱為體育健康A類學生,已知體育健康A類學生中有10名女生.

(Ⅰ)根據(jù)已知條件完成下面列聯(lián)表,并據(jù)此資料你是否認為達到體育健康A類學生與性別有關(guān)?

非體育健康A類學生

體育健康A類學生

合計

男生

女生

合計

(Ⅱ)將每天自主參加體育鍛煉時間不低于50分鐘的學生稱為體育健康類學生,已知體育健康類學生中有2名女生,若從體育健康類學生中任意選取2人,求至少有1名女生的概率.

附:

P

0.05

0.010

0.005

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=sin(ωx-)(其中ω>0)的圖象上相鄰兩個最高點的距離為π.

(Ⅰ)求函數(shù)fx)的圖象的對稱軸;

(Ⅱ)若函數(shù)y=fx)-m在[0,π]內(nèi)有兩個零點x1,x2,求m的取值范圍及cos(x1+x2)的值.

查看答案和解析>>

同步練習冊答案