分析 根據正切函數的周期公式以及正切函數的性質進行求解即可.
解答 解:由正切函數的周期公式得函數的周期T=$\frac{π}{2}$;
由f(x)>1得tan(2x-$\frac{π}{4}$)>1,
得$\frac{π}{4}$+kπ<2x-$\frac{π}{4}$<$\frac{π}{2}$+kπ,得$\frac{kπ}{2}$+$\frac{π}{4}$<x<$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z,
即不等式的解集為$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$;
故答案為:$\frac{π}{2}$,$\{x|\frac{kπ}{2}+\frac{π}{4}<x<\frac{kπ}{2}+\frac{3π}{8},k∈Z\}$;
點評 本題主要考查正切函數的周期的計算以及正切函數的性質的應用.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 最小正周期為π的奇函數 | B. | 最小正周期為π的偶函數 | ||
C. | 最小正周期為$\frac{π}{2}$的奇函數 | D. | 最小正周期為$\frac{π}{2}$的偶函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | a<0 | B. | a>0且a≠1 | C. | a<1 | D. | a<1且a≠0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0] | B. | [-1,1] | C. | [0,2] | D. | [2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com