7.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[-1,0]時(shí),f(x)=-x,則f(2017)+f(2018)=-1.

分析 根據(jù)函數(shù)奇偶性和對稱性的性質(zhì)進(jìn)行轉(zhuǎn)化求出函數(shù)的周期,進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱,
∴f(1+x)=f(1-x)=-f(x-1),
則f(x+2)=-f(x),
即f(x+4)=-f(x+2)=f(x),
則函數(shù)f(x)是周期為4的周期函數(shù),且f(0)=0,
則f(2017)=f(4×504+1)=f(1)=-f(-1)=-1,
f(2018)=f(4×504+2)=f(2)=-f(0)=0,
則f(2017)+f(2018)=-1+0=-1,
故答案為:-1

點(diǎn)評 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性和對稱性的關(guān)系推出函數(shù)的周期性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義:函數(shù)y=[x]為“下取整函數(shù)”,其中[x]表示不大于x的最大整數(shù);函數(shù)y=<x>為“上取整函數(shù)”,其中<x>表示不小于x的最小整數(shù);例如根據(jù)定義可得:[1.3]=1,[-1.3]=-2,<-2.3>=-2,<2.3>=3
(1)函數(shù)f(x)=<x•[x]>,x∈[-2,2];求$f({-\frac{3}{2}})$和$f({\frac{3}{2}})$;
(2)判斷(1)中函數(shù)f(x)的奇偶性;
(3)試用分段函數(shù)的形式表示函數(shù):y=[x]+<x>,(-1≤x≤1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-x-2<0,x∈R},集合B={x||x-2|≥1,x∈R},則A∩B={x|-1<x≤1,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了在運(yùn)行右面的程序之后輸出y=2,輸入的x可以是(  ) 
A.0B.2C.0或2D.-1,0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若x2=1,則x=1或x=-1”的逆否命題為( 。
A.若x2=1,則x≠1且x≠-1B.若x2≠1,則x≠1且x≠-1
C.若x≠1且x≠-1,則x2≠1D.若x≠1或x≠-1,則x2≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面 ABCD,且PA=AD=DB=$\frac{1}{2}$,AB=1,M是PB的中點(diǎn).
(1)證明:面PAD⊥面PCD;
(2)求AC與PB所成的角;
(3)求平面AMC與平面BMC所成二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過 A(-1,0),B(3,0)兩點(diǎn)的所有圓中面積最小的圓的方程是(x-1)2+y2=4 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=ex+$\frac{1}{2}$x-a(a∈R)(e為自然對數(shù)的底數(shù)),若存在x0∈[-1,0],使得f(f(x0))=x0,則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$(1+ln2),1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)點(diǎn)A(3,-5),B(-2,-2),直線l過點(diǎn)P(1,1)且與線段AB相交,則直線l的斜率k的取值范圍是( 。
A.k≥1或k≤-3B.-3≤k≤1C.-1≤k≤3D.以上都不對

查看答案和解析>>

同步練習(xí)冊答案