17.設(shè)點A(3,-5),B(-2,-2),直線l過點P(1,1)且與線段AB相交,則直線l的斜率k的取值范圍是( 。
A.k≥1或k≤-3B.-3≤k≤1C.-1≤k≤3D.以上都不對

分析 利用斜率計算公式及其意義即可得出.

解答 解:kPA=$\frac{-5-1}{3-1}$=-3,kPB=$\frac{-2-1}{-2-1}$=1.
∵直線l過點P(1,1)且與線段AB相交,
則直線l的斜率k的取值范圍是k≥1或k≤-3.
故選:A.

點評 本題考查了直線的傾斜角與斜率的關(guān)系及其性質(zhì),考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),且f(x)的圖象關(guān)于直線x=1對稱,當(dāng)x∈[-1,0]時,f(x)=-x,則f(2017)+f(2018)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.在平面直角坐標(biāo)系xOy中,直線x=a(a>0)與曲線y=x2及x軸所圍成的封閉圖形的面積為$\frac{8}{3}$,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}的前n項和${S_n}={n^2}-7n+3$,則有( 。
A.S3最小B.S4最小C.S7最小D.S3,S4最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)a>0且a≠1,則“函數(shù)f(x)=ax”在R上是增函數(shù)是“函數(shù)g(x)=xa”“在(0,+∞)上是增函數(shù)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在區(qū)間[-$\frac{π}{4}$,$\frac{2π}{3}$]上任取一個數(shù)x,則函數(shù)f(x)=3sin(2x-$\frac{π}{6}$)的值不小于0的概率為( 。
A.$\frac{8}{11}$B.$\frac{3}{11}$C.$\frac{6}{11}$D.$\frac{5}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,M為AB的中點,$\overrightarrow{AN}=2\overrightarrow{NC}$,若$\overrightarrow{MN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,則x+y=$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若冪函數(shù)f(x)過點(2,8),則滿足不等式 f(a-3)>f(1-a) 的實數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列選項中,說法正確的個數(shù)是( 。
(1)命題“?x0∈R,${x_0}^2-{x_0}≤0$”的否定為“?x∈R,x2-x>0”;
(2)命題“在△ABC中,A>30°,則$sinA>\frac{1}{2}$”的逆否命題為真命題;
(3)設(shè){an}是公比為q的等比數(shù)列,則“q>1”是“{an}為遞增數(shù)列”的充分必要條件;
(4)若統(tǒng)計數(shù)據(jù)x1,x2,…,xn的方差為1,則2x1,2x2,…,2xn的方差為2;
(5)若兩個隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)絕對值越接近1.
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案