【題目】如圖,四邊形是平行四邊形,平面,,,,,,,為的中點.
(1)求證:平面;
(2)求證:平面平面;
(3)求多面體的體積.
【答案】(1)詳見解析;(2)詳見解析;(3).
【解析】試題分析:(1)證明線面平行可證明直線平行于平面內(nèi)的直線,本題中只需證明;(2)證明面面垂直可證明其中一個平面經(jīng)過另外一個平面的垂線,本題中只需證明平面中的平面;(3)不規(guī)則多面體的體積求解時將其分割為柱體和椎體分別求體積
試題解析:(1)證明:如圖,取的中點,連接,,
在中,∵是的中點,
∴且,又∵,∴且,即四邊形是平行四邊形,∴.又平面,平面,∴平面.
(2)證明:在中,,取中點,連,∵,
∴,又,∴,∴,
∴,又平面,平面,∴,∵,
∴平面.又∵平面,∴平面平面.
(3)解:連,并延長交于,連.
∵分別為的中點,∴,∴是中點,∵,,
∴多面體為三棱柱,體積為,且四邊形為平行四邊形,∴,∵平面,∴平面,四棱錐的體積為,
∴多面體的體積為.
科目:高中數(shù)學 來源: 題型:
【題目】某家庭進行理財投資,根據(jù)長期收益率市場預測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風險型產(chǎn)品的收益與投資額的算術平方根成正比,已知投資1萬元時兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元(如圖).
(1)分別寫出兩種產(chǎn)品的收益與投資的函數(shù)關系;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財投資,問:怎樣分配資金能使投資獲得最大利潤,其最大收
益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題關于的不等式的解集是,命題函數(shù)的定義域為.
(1)如果為真命題,求實數(shù)的取值范圍;
(2)如果為真命題, 為假命題, 求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲、乙兩種商品,經(jīng)銷這兩種商品所能獲得的利潤分別是萬元和萬元,它們與投入資金萬元的關系為:,今有3萬元資金投入經(jīng)營這兩種商品.問:對乙種商品的資金為多少萬元時,能獲得最大利潤?最大利潤為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com