(2013•德州二模)已知某幾何體的直觀圖和三視圖如下圖所示,其正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,

(1)求證:BC∥平面C1B1N;
(2)求證:BN⊥平面C1B1N;
(3)求此幾何體的體積.
分析:(1)利用幾何體的三視圖,判斷側(cè)面BCC1B1是矩形,利用直線與平面平行的判定定理證明BC∥平面C1B1N;
(2)該幾何體的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,BA,BC,BB1兩兩垂直.通過(guò)計(jì)算得出∠BNB1 為直角,從而有BN⊥B1N,再根據(jù)線面垂直的判定,即可證明BN⊥平面C1B1N;
(3)連接CN,把幾何體分割成一個(gè)三棱錐和一個(gè)四棱錐,即可求解.
解答:解:(1)證明:∵該幾何體的正視圖為矩形,側(cè)視圖為等腰直角三角形,俯視圖為直角梯形,∴BA,BC,BB1兩兩互相垂直.
∵BC∥B1C1,B1C1?平面C1B1N,BC?平面C1B1N,
∴BC∥平面C1B1N…(4分)
(2)連BN,過(guò)N作NM⊥BB1,垂足為M,
∵B1C1⊥平面ABB1N,BN?平面ABB1N,
∴B1C1⊥BN,…(5分)
由三視圖知,BC=4,AB=4,BM=AN=4,BA⊥AN,
∴BN=
42+42
=4
2
,B1N=
NM2+B1M2
=
42+42
=4
2
,…(6分)
∵BB1=82=64,B1N2+BN2=32+32=64,
∴BN⊥B1N,…(7分)
∵B1C1?平面B1C1N,B1N?平面B1C1N,B1N∩B1C1=B1
∴BN⊥平面C1B1N        …(9分)
(3)連接CN,
VC-BCN=
1
3
×BC•S△ABN=
1
3
×4×
1
2
×4×4=
32
3
…(11分)
∴平面B1C1CB⊥ANB1B=BB1,NM⊥BB1,NM?平面B1C1CB,
∴NM⊥平面B1C1CB,
V N-B1C1CB=
1
3
×NM•S 矩形B1C1CB=
1
3
×4×4×8=
128
3
…(13分)
此幾何體的體積V=VC-BCN+V N-B1C1CB=
32
3
+
64
3
=32;
V=VC-BCN+V N-B1C1CB=
32
3
+
128
3
=
160
3
…(14分)
點(diǎn)評(píng):本小題主要考查直線與平面的位置關(guān)系、平面與平面的位置關(guān)系、棱錐的體積等有關(guān)知識(shí),考查空間想象能力和思維能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,該雙曲線與拋物線y2=16x的準(zhǔn)線交于A,B兩點(diǎn),若|AB|=6
5
,則雙曲線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)已知f(x)為R上的可導(dǎo)函數(shù),且對(duì)?x∈R,均有f(x)>f′(x),則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn),根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程
y
=0.68
x
+54.6


表中有一個(gè)數(shù)據(jù)模糊不清,請(qǐng)你推斷出該數(shù)據(jù)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)為了解某校教師使用多媒體進(jìn)行教學(xué)的情況,將全校200名 教師按一學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù)分成了[0,9),[10,19),[20,29),[30,39),[40,49)五層.現(xiàn)采用分層抽樣從該校教師中抽取20名教師,調(diào)查了他們上學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù),結(jié)果用莖葉圖表示如圖,據(jù)此可知該校一學(xué)期使用多媒體進(jìn)行教學(xué)的次數(shù)在[30,39)內(nèi)的教師人數(shù)為
40
40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州二模)某種零件按質(zhì)量標(biāo)準(zhǔn)分為1,2,3,4,5五個(gè)等級(jí),現(xiàn)從一批該零件巾隨機(jī)抽取20個(gè),對(duì)其等級(jí)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下
等級(jí) 1 2 3 4 5
頻率 0.05 m 0.15 0.35 n
(1)在抽取的20個(gè)零件中,等級(jí)為5的恰有2個(gè),求m,n;
(2)在(1)的條件下,從等級(jí)為3和5的所有零件中,任意抽取2個(gè),求抽取的2個(gè)零件等級(jí)恰好相同的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案