【題目】某校畢業(yè)典禮由6個(gè)節(jié)目組成,考慮整體效果,對(duì)節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起,則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有
A. 種 B. 種 C. 種 D. 種
【答案】A
【解析】根據(jù)題意,由于節(jié)目甲必須排在前三位,分3種情況討論:①、甲排在第一位,節(jié)目丙、丁必須排在一起,則乙丙相鄰的位置有4個(gè),考慮兩者的順序,有2種情況,將剩下的3個(gè)節(jié)目全排列,安排在其他三個(gè)位置,有種安排方法,則此時(shí)有種編排方法;②、甲排在第二位,節(jié)目丙、丁必須排在一起,則乙丙相鄰的位置有3個(gè),考慮兩者的順序,有2種情況,將剩下的3個(gè)節(jié)目全排列,安排在其他三個(gè)位置,有種安排方法,則此時(shí)有種編排方法;③、甲排在第三位,節(jié)目丙、丁必須排在一起,則乙丙相鄰的位置有3個(gè),考慮兩者的順序,有2種情況,將剩下的3個(gè)節(jié)目全排列,安排在其他三個(gè)位置,有種安排方法,則此時(shí)有種編排方法;則符合題意要求的編排方法有種;故選A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在(﹣1,+∞)內(nèi)的增函數(shù),且f(xy)=f(x)+f(y)若f(3)=1且f(a)>f(a﹣1)+2
求:
(1)f(9)的值,
(2)求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x﹣1
(1)求f(﹣3)的值;
(2)求函數(shù)f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=loga(2﹣ax)是[0,1]上的減函數(shù),則a的取值范圍為 ( )
A. (0,1) B. (1,2) C. (0,2) D. (2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|x>1},B={x|x≥2}.
(1)求集合A∩(RB);
(2)若集合C={x|x﹣a>0},且滿足A∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列結(jié)論:
①y=x2+1,x∈[﹣1,2],y的值域[2,5]是;
②冪函數(shù)圖象一定不過第四象限;
③函數(shù)f(x)=loga(2x﹣1)﹣1的圖象過定點(diǎn)(1,0);
④若loga >1,則a的取值范圍是( ,1);
⑤函數(shù)f(x)= + 是既奇又偶的函數(shù);
其中正確的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式為 .
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合U=R,A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求A∩B,(UA)∪B;
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,且過點(diǎn).若點(diǎn)在橢圓上,則點(diǎn)稱為點(diǎn)的一個(gè)“橢點(diǎn)”.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線: 與橢圓相交于, 兩點(diǎn),且, 兩點(diǎn)的“橢點(diǎn)”分別為, ,以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),試求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com