【題目】已知定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x2+2x﹣1
(1)求f(﹣3)的值;
(2)求函數(shù)f(x)的解析式.
【答案】
(1)解:因為定義在R上的奇函數(shù)f(x),滿足當(dāng)x>0時,f(x)=x2+2x﹣1,
所以f(﹣3)=﹣f(3)=﹣(9+6﹣1)=﹣14
(2)解:因為定義在R上的奇函數(shù)f(x),
所以f(﹣0)=﹣f(0),即f(0)=0,
設(shè)x<0,則﹣x>0,
因為當(dāng)x>0時,f(x)=x2+2x﹣1,
所以f(﹣x)=x2﹣2x﹣1=﹣f(x),
即當(dāng)x<0時,f(x)=﹣x2+2x+1,
綜上得,f(x)=
【解析】(1)根據(jù)題意和奇函數(shù)的性質(zhì)求出f(﹣3)的值;(2)根據(jù)奇函數(shù)的性質(zhì)可得f(0)=0,設(shè)x<0則﹣x>0,由條件和奇函數(shù)的性質(zhì)求出x<0的表達(dá)式,再用分段函數(shù)表示出來即可.
【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計本校高二年級每個學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在30分以下的學(xué)生后,共有男生300名,女生200名,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.
分?jǐn)?shù)段 | ||||||
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
附表及公式:
0.100 | 0.050 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 6.635 | 10.828 |
(1)估計男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計算結(jié)果看,數(shù)學(xué)成績與性別是否有關(guān);
(2)規(guī)定80分以上者為優(yōu)分(含80分),請你根據(jù)已知條件作出 列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費(fèi)xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及下面一些統(tǒng)計量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中 , .
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最下二乘估計分別為 , .
(1)根據(jù)散點(diǎn)圖判斷,y=a+bx與 哪一個適宜作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x.根據(jù)(2)的結(jié)果回答下列問題:
①年宣傳費(fèi)x=49時,年銷售量及年利潤的預(yù)報值時多少?
②年宣傳費(fèi)x為何值時,年利潤的預(yù)報值最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應(yīng)運(yùn)而生.某市場研究人員為了了解共享單車運(yùn)營公司的經(jīng)營狀況,對該公司最近六個月內(nèi)的市場占有率進(jìn)行了統(tǒng)計,并繪制了相應(yīng)的拆線圖.
(1)由拆線圖可以看出,可用線性回歸模型擬合月度市場占有率與月份代碼之間的關(guān)系.求關(guān)于的線性回歸方程,并預(yù)測公司2017年4月份(即時)的市場占有率;
(2)為進(jìn)一步擴(kuò)大市場,公司擬再采購一批單車.現(xiàn)有采購成本分別為1000元/輛和1200元/輛的兩款車型可供選擇,按規(guī)定每輛單車最多使用4年,但由于多種原因(如騎行頻率等)會導(dǎo)致車輛報廢年限各不相同.考慮到公司運(yùn)營的經(jīng)濟(jì)效益,該公司決定先對兩款車型的單車各100輛進(jìn)行科學(xué)模擬測試,得到兩款單車使用壽命頻數(shù)表如下:
車型 報廢年限 | 1年 | 2年 | 3年 | 4年 | 總計 |
| 20 | 35 | 35 | 10 | 100 |
| 10 | 30 | 40 | 20 | 100 |
經(jīng)測算,平均每輛單車每年可以帶來收入500元.不考慮除采購成本之外的其他成本,假設(shè)每輛單車的使用壽命都是整年,且以頻率作為每輛單車使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車產(chǎn)生利潤的期望值為決策依據(jù),你會選擇采購哪款車型?
(參考公式:回歸直線方程為,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集為R,集合A=(﹣∞,﹣1)∪(3,+∞),記函數(shù)f(x)= 的定義域為集合B
(1)分別求A∩B,A∩RB;
(2)設(shè)集合C={x|a+3<x<4a﹣3},若B∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)若直線是曲線與曲線的公切線,求;
(2)設(shè),若有兩個零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】Rt△ABC的斜邊BC在平面α內(nèi),則△ABC的兩條直角邊在平面α內(nèi)的正射影與斜邊組成的圖形只能是( )
A.一條線段
B.一個銳角三角形或一條線段
C.一個鈍角三角形或一條線段
D.一條線段或一個鈍角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校畢業(yè)典禮由6個節(jié)目組成,考慮整體效果,對節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起,則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有
A. 種 B. 種 C. 種 D. 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E為BC的中點(diǎn),點(diǎn)M為棱AA1的中點(diǎn).
(1)證明:DE⊥平面A1AE;
(2)證明:BM∥平面A1ED.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com