分析 對任意正整數(shù)n恒有2Sn=a${\;}_{n}^{2}$+an成立,可得a1=1.當n≥2時,an-an-1=1,利用等差數(shù)列的通項公式可得an=n,可得bn=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,再利用“累加求和”即可得出.
解答 解:對任意正整數(shù)n恒有2Sn=a${\;}_{n}^{2}$+an成立,
∴2a1=${a}_{1}^{2}$+a1,a1>0,解得a1=1.
當n≥2時,2an=2(Sn-Sn-1)=${a}_{n}^{2}+{a}_{n}$-$({a}_{n-1}^{2}+{a}_{n-1})$,
化為:(an+an-1)(an-an-1-1)=0,an>0,
∴an-an-1=1,
∴數(shù)列{an}是等差數(shù)列,首項為1,公差為1.
∴an=1+(n-1)=n.
∴bn=$\frac{1}{\sqrt{{a}_{n}}+\sqrt{{a}_{n+1}}}$=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}$-$\sqrt{n}$,
∴數(shù)列{bn}的前n項和為Tn=$(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+$(\sqrt{n+1}-\sqrt{n})$=$\sqrt{n+1}$-1.
∴T48=$\sqrt{49}$-1=6.
故答案為:6.
點評 本題考查了遞推關系、等差數(shù)列的通項公式、“累加求和”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 15 | C. | 20 | D. | 25 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com