分析 根據(jù)條件即可得到$\left\{\begin{array}{l}{-1≤-b≤1}&{①}\\{-1≤a+b≤1}&{②}\end{array}\right.$,①+②便可求出a的范圍,從而可求出ab的范圍,進(jìn)而便可得出ab+a+b的取值范圍.
解答 解:由f(0)∈[-1,1]得,-1≤b≤1;
∴-1≤-b≤1①;
由f(1)∈[0,2]得,0≤1+a+b≤2;
∴-1≤a+b≤1②;
①+②得,-2≤a≤2;
∴$\left\{\begin{array}{l}{|a|≤2}\\{|b|≤1}\end{array}\right.$;
∴|ab|≤2;
∴-2≤ab≤2③;
∴②+③得,-3≤ab+a+b≤3;
∴ab+a+b的取值范圍為[-3,3].
故答案為:[-3,3].
點(diǎn)評(píng) 考查已知函數(shù)求值的方法,不等式的性質(zhì),以及絕對(duì)值不等式的解法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 40 | B. | 45 | C. | 50 | D. | 55 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (x-1)2+(y+1)2=2 | B. | (x+1)2+(y-1)2=2 | C. | (x-1)2+(y+1)2=4 | D. | (x+1)2+(y-1)2=4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com