9.設(shè)等差數(shù)列{an}的前n項和為Sn,若S8>S9>S7,則滿足Sn•Sn+1<0的正整數(shù)n的值為16.

分析 由題意可得a9<0,a8>0,a9+a8>0,由等差數(shù)列的前n項和公式、性質(zhì)可得S17<0,S16>0,S15>0,可得滿足題意的n值.

解答 解:由題意可得S8>S9>S7,
∴a8=S8-S7>0,a9=S9-S8<0,且a9+a8=S9-S7>0,
∴S17═$\frac{17({a}_{1}+{a}_{17})}{2}$=$\frac{17×2{a}_{9}}{2}$=17a9<0,
S16═$\frac{16({a}_{1}+{a}_{16})}{2}$=8(a1+a16)=8(a8+a9)>0,
同理可得S15=15a8>0,
∴滿足Sn•Sn+1<0的正整數(shù)n=16,
故答案為:16.

點評 本題考查了等差數(shù)列的前n項和公式,等差數(shù)列的性質(zhì),以及整體思想的靈活應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.將直線l沿y軸的負(fù)方向平移a(a>0)個單位,再沿x軸正方向平移a+1個單位得直線l',此時直線l'與l重合,則直線l'的斜率為( 。
A.$\frac{a}{a+1}$B.-$\frac{a}{a+1}$C.$\frac{a+1}{a}$D.-$\frac{a+1}{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{(x-1)^2},({x<1})\\(3-a)x+4a,({x≥1})\end{array}$為增函數(shù),則實數(shù)a的取值范圍是( 。
A.-1≤a<3B.a<3C.a>3或a≤-1D.-1<a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知圓C(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0.有以下幾個命題:
①直線l恒過定點(3,1);        
②圓C被y軸截得的弦長為 4$\sqrt{6}$;
③直線 l與圓C恒相交;        
④直線 l被圓C截得最短弦長時,l方程為2x-y-5=0,
其中正確命題的是( 。
A.②③B.①③④C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某單位為了了解用電量y(度)與氣溫X(0C)之間的關(guān)系,隨機(jī)統(tǒng)計了某4天的用電量與當(dāng)天氣溫,并作了如下的對照表:由表中數(shù)據(jù),得回歸直線方程$\hat y$=$\hat bx$+$\hat a$,若$\hat b$=-2,則$\hat a$=( 。
氣溫X(0C)181310-1
用電量y24343864
A.60B.58C.62D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x),g(x)分別是定義在R上的偶函數(shù)和奇函數(shù),若f(x)-g(x)=21-X,則g(-1)=$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.四棱錐P-ABCD的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,則該四棱錐的外接球的半徑為( 。
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=(x+a)ex(x>-3),其中a∈R.
(1)若曲線y=f(x)在點A(0,a)處的切線l與直線y=|2a-2|x平行,求l的方程;
(2)討論函數(shù)y=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.“m$≤{∫}_{1}^{2}(4-3{x}^{2})dx$”是“函數(shù)f(x)=2${\;}^{x}+\frac{1}{{2}^{x+m}}$的值不小于4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案