4.某單位為了了解用電量y(度)與氣溫X(0C)之間的關(guān)系,隨機(jī)統(tǒng)計了某4天的用電量與當(dāng)天氣溫,并作了如下的對照表:由表中數(shù)據(jù),得回歸直線方程$\hat y$=$\hat bx$+$\hat a$,若$\hat b$=-2,則$\hat a$=(  )
氣溫X(0C)181310-1
用電量y24343864
A.60B.58C.62D.64

分析 根據(jù)所給的表格求出本組數(shù)據(jù)的樣本中心點,結(jié)合樣本中心點在線性回歸直線上求得a值

解答 由題意,$\overline{x}$=(18+13+10-1)=10,$\overline{y}$=(24+34+38+64)=40
將(10,40)代入y=-2x+a,∴40=10×(-2)+a,
解得:a=60,
故選:A.

點評 本題考查回歸直線方程,考查回歸分析的初步應(yīng)用.利用樣本中心點在線性回歸直線上是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)全集U=R,A={x|x(x-2)<0},B={x|y=$\sqrt{1-x}$},則圖中陰影部分表示的集合為( 。
A.{x|0<x≤1}B.{x|1<x<2}C.{x|x≤1}D.{x|1≤x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=$\frac{{x}^{2}-2x+9}{x}$(x<0)最大值為-8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$的模長都為1,且<$\overrightarrow{OA}$,$\overrightarrow{OB}$>=120°,若正數(shù)λ,μ滿足$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$,則λ+μ的最大值為2;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知直線l1:ax+4y-2=0直線l2:2x+y+2=0,且兩條直線互相垂直.
(1)直線l1與l2的交點坐標(biāo);
(2)已知圓C:x2+y2+6x+8y+21=0,判斷直線l1與圓C有無公共點,有幾個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等差數(shù)列{an}的前n項和為Sn,若S8>S9>S7,則滿足Sn•Sn+1<0的正整數(shù)n的值為16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,梯形ABCD中,AD∥BC,∠ABC=90°,AD=1,BC=2,∠DCB=60°,在平面ABCD內(nèi)過點C作l⊥CB,將梯形ABCD以l為軸旋轉(zhuǎn)一周
(1)求旋轉(zhuǎn)體的體積;
(2)求旋轉(zhuǎn)體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.sin(-150°)的值為(  )
A.$-\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t+1}\end{array}\right.$(t為參數(shù)),曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)).
(1)若在極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(4,$\frac{π}{3}$),判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求點Q到直線l的距離的最大值與最小值的和.

查看答案和解析>>

同步練習(xí)冊答案