16.公差為d的等差數(shù)列{an},若a1=d≠0,且其前四項和S4=am,則m=( 。
A.6B.8C.10D.12

分析 根據(jù)等差數(shù)列的求和公式和通項公式即可求出.

解答 解:${S_4}=4{a_1}+\frac{4×3}{2}d=4d+6d=10d={a_m}={a_1}+(m-1)d=md$,所以m=10.
故選:C.

點評 本題考查了等差數(shù)列的求和公式和通項公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8,則數(shù)列{an}的前n項和為( 。
A.2n-1B.16[1-($\frac{1}{2}$)n]C.2n-1-1D.16[1-($\frac{1}{2}$)n-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1與側(cè)面CBB1C1都是菱形,∠ACC1=∠CC1B1=60°,AC=2.
(Ⅰ)求證:AB1⊥CC1
(Ⅱ)若$A{B_1}=\sqrt{6}$,求平面CAB1與平面A1AB1所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中偶數(shù)的個數(shù)為(  )
A.24B.48C.60D.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<π)的圖象如圖所示,則函數(shù)f(x)的單調(diào)遞減區(qū)間為( 。
A.$(kπ+\frac{π}{2},kπ+\frac{3π}{2}),k∈Z$B.$(2kπ-\frac{π}{2},2kπ),k∈Z$
C.$(2kπ+\frac{π}{2},2kπ+π),k∈Z$D.$(kπ-\frac{π}{2},kπ),k∈Z$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.數(shù)列{an}中,a1=1,當n≥2時,${S_n}=\frac{3}{2}-{a_n}$,則an=$\left\{\begin{array}{l}{1,n=1}\\{(\frac{1}{2})^{n},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,若b=1,c=$\sqrt{3}$,∠C=$\frac{2π}{3}$,則a等于( 。
A.2B.$\sqrt{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.命題?x∈R,ex-x-1≥0的否定是( 。
A.?x∈R,ex-x-1≤0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0
C.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0D.?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x3+mx2+nx-2的圖象在點(-1,f(-1))處的切線方程為9x-y+3=0.
(1)求函數(shù)y=f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)f(x)(x∈[0,3])的值域為A,函數(shù)f(x)(x∈[a,a+$\frac{3}{2}$])的值域為B,當A⊆B時,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案