【題目】如右圖,一個直徑為1的小圓沿著直徑為2的大圓內壁的逆時針方

向滾動,MN是小圓的一條固定直徑的兩個端點.那么,當小圓這

樣滾過大圓內壁的一周,點M,N在大圓內所繪出的圖形大致是( )

A.B.

C.D.

【答案】A

【解析】

如圖:

如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據(jù)大圓的半徑是小圓半徑的 倍,可知的中點是小圓轉動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內壁上滾動,圓心轉過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點。而在小圓中,圓心角是小圓的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置。由于的任意性,可知點的軌跡是大圓水平的這條直徑。類似的可知點的軌跡是大圓豎直的這條直徑.

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為自然對數(shù)的底數(shù)).

(1)若處的切線過點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角梯形PBCD中, APD的中點,如下左圖。將沿AB折到的位置,使,點ESD上,且,如下圖。

1)求證: 平面ABCD;

2)求二面角E—AC—D的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】邗江中學高二年級某班某小組共10人,利用寒假參加義工活動,已知參加義工活動次數(shù)為1,2,3的人數(shù)分別為3,3,4.現(xiàn)從這10人中選出2人作為該組代表參加座談會.

(1)記“選出2人參加義工活動的次數(shù)之和為4”為事件,求事件發(fā)生的概率;

(2)設為選出2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求曲線在點處的切線方程;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學家歐拉在1765年提出:三角形的外心、重心位于同一直線上,這條直線被后人稱之為三角形的歐拉線,若的頂點,且的歐拉線的方程為.

1)求外心(外接圓圓心)的坐標;

2)求頂點的坐標.

(注:如果三個頂點坐標分別為,,則重心的坐標是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義域為R的奇函數(shù).

k值;

,試判斷函數(shù)單調性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設X~N(μ1,),Y~N(μ2,),這兩個正態(tài)分布密度曲線如圖所示,下列結論中正確的是 (  )

A. P(Y≥μ2)≥P(Y≥μ1)

B. P(X≤σ2)≤P(X≤σ1)

C. 對任意正數(shù)t,P(X≥t)≥P(Y≥t)

D. 對任意正數(shù)t,P(X≤t)≥P(Y≤t)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表提供了某廠節(jié)能降耗技術改造后生產甲產品過程中記錄的產量(噸)與相應的生產能耗(噸)標準煤的幾組對照數(shù)據(jù)

(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關于的線性回歸方程

(2)已知該廠技改前100噸甲產品的生產能耗為90噸標準煤.試根據(jù)(1)求出的線性回歸方程,預測生產100噸甲產品的生產能耗比技改前降低多少噸標準煤?

參考公式:

查看答案和解析>>

同步練習冊答案