19.向量$\overrightarrow{a}$=(4,-3),$\overrightarrow$=(0,5),則$\overrightarrow{a}$與$\overrightarrow$夾角平分線上的單位向量是(  )
A.(2,1)B.(1,2)
C.($\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)D.($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)

分析 根據(jù)向量加法的平行四邊形法則可知$\overrightarrow{a}+\overrightarrow$平分$\overrightarrow{a},\overrightarrow$的夾角.

解答 解:∵$|\overrightarrow{a}|=|\overrightarrow|=5$,∴$\overrightarrow{a}+\overrightarrow$所在直線即為$\overrightarrow{a}$與$\overrightarrow$夾角平分線.
∵$\overrightarrow{a}+\overrightarrow$=(4,2),
∴與$\overrightarrow{a}+\overrightarrow$共線的單位向量為$\frac{\overrightarrow{a}+\overrightarrow}{|\overrightarrow{a}+\overrightarrow|}$=($\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$)或-$\frac{\overrightarrow{a}+\overrightarrow}{|\overrightarrow{a}+\overrightarrow|}$=(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$).
故選:D.

點(diǎn)評(píng) 本題考查了平面向量加法的幾何意義,單位向量的求法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知角α的終邊落在直線y=-2x上,則tanα=-2,$cos(2α+\frac{3}{2}π)$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別F1(-$\sqrt{2}$,0),F(xiàn)2($\sqrt{2}$,0),直線x+$\sqrt{2}$y=0與橢圓C的一個(gè)交點(diǎn)為(-$\sqrt{2}$,1),點(diǎn)A是橢圓C上的任意一點(diǎn),延長(zhǎng)AF1交橢圓C于點(diǎn)B,連接BF2,AF2
(1)求橢圓C的方程;
(2)求△ABF2的內(nèi)切圓的最大周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an},a1=1,an+1=2an+(-1)n(n∈N*).
(1)是否存在實(shí)數(shù)λ,使得數(shù)列{a2n-1+λ}成等比數(shù)列,若存在,求出λ的值,若不存在,請(qǐng)說明理由;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.化簡(jiǎn)$\frac{si{n}^{3}θ+co{s}^{3}θ}{sinθ+cosθ}$的結(jié)果是1-$\frac{1}{2}$sin2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)$\overrightarrow{a}$,$\overrightarrow$是不共線的兩個(gè)向量,已知$\overrightarrow{AB}$=2k$\overrightarrow{a}$+(k2-2)$\overrightarrow$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow$,若A、B、D三點(diǎn)共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖所示的陰影部分可用二元一次不等式組表示為$\left\{\begin{array}{l}{x-y≥0}\\{x+y>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y≤0}\\{x+y>0}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.將下列各式化為Asin(α+φ)(A>0,0<φ<2π)的形式:
(1)sinα+$\frac{\sqrt{3}}{3}$coosα;
(2)2sinα-2cosα;
(3)-$\sqrt{3}$sinα-3cosα;
(4)$\sqrt{6}$cosα-$\sqrt{2}$sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若x,y滿足不等式組$\left\{\begin{array}{l}y-2≥0\\ x-y+1≥0\\ x+y-5≤0\end{array}\right.$,則$\frac{y}{x}$的最大值是( 。
A.$\frac{3}{2}$B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案