A. | 10 | B. | 0 | C. | 1 | D. | 11 |
分析 322016+a=(33-1)2016+a,利用二項(xiàng)式定理,結(jié)合322016+a能被11整除,即可求a的值.
解答 解:∵322016+a=(33-1)2016+a
=C20160•332016-C20161•332015+C20162•332014+…-C20162015•331+1+a
能被11整除,0≤a<12,
故1+a能被11整除,故a=10.
故選:A.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開式的通項(xiàng)公式,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一個(gè)命題的逆命題為真,則它的逆否命題一定為真 | |
B. | “?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0” | |
C. | 命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0” | |
D. | 若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com