18.下列說法正確的是( 。
A.一個命題的逆命題為真,則它的逆否命題一定為真
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”
C.命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
D.若命題“¬p”與“p或q”都是真命題,則命題q一定是真命題

分析 A.根據(jù)四種命題真假關系進行判斷,
B.根據(jù)全稱命題的否定是特稱命題進行判斷,
C.根據(jù)逆否命題的定義進行判斷,
D.根據(jù)復合命題真假關系進行判斷.

解答 解:A.∵逆命題和否命題互為逆否命題,逆否命題的真假性相同,則一個命題的逆命題為真,則它的否命題一定為真,但逆否命題不一定為真,故A錯誤
B.“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”,故B錯誤,
C.命題“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b不全為0,則a2+b2≠0”,故C錯誤,
D.若¬p為真命題,則p是假命題,若p或q為真命題,則q一定是真命題,故D正確
故選:D

點評 本題主要考查命題的真假判斷,涉及含有量詞的命題的否定,四種命題的真假關系以及復合命題的真假關系,涉及的知識點較多,綜合性較強,但難度不大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

8.已知數(shù)列{an}滿足an+1=3an+2,n∈N*,a1=2,bn=an+1
(1)證明數(shù)列{bn}為等比數(shù)列.
(2)求數(shù)列{an}的通項公式an與其前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知函數(shù)f(x)=3-sin$\frac{πx}{2}$,則f(1)+f(2)+f(3)+…+f(100)=( 。
A.150B.200C.250D.300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.將正整數(shù)12分解成兩個正整數(shù)的乘積有1×12,2×6,3×4三種,其中3×4是三種分解中,兩數(shù)差的絕對值最小的,我們稱3×4為12的最佳分解.當p×q(p≤q且p,q∈N*)是正整數(shù)n的最佳分解時,我們規(guī)定函數(shù)f(n)=$\frac{p}{q}$,例如f(12)=$\frac{3}{4}$,則關于函數(shù)f(n)有下列敘述:①f(24)=$\frac{3}{2}$;②f(144)=$\frac{9}{16}$;   ③f(13)=$\frac{1}{13}$; ④f(28)=$\frac{4}{7}$.
其中正確的有③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設a∈Z,且0≤a<12,若322016+a能被11整除,則a的值為(  )
A.10B.0C.1D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=-$\frac{1}{3}$x3+bx2+cx+bc.
(Ⅰ)若函數(shù)f(x)在x=1處有極值-$\frac{4}{3}$,試確定b、c的值;
(Ⅱ)若b=1,f(x)存在單調遞增區(qū)間,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.下列說法正確的是( 。
A.線性回歸模型y=bx+a+e是一次函數(shù)
B.在線性回歸模型y=bx+a+e中,因變量y是由自變量x唯一確定的
C.在殘差圖中,殘差點比較均勻地落在水平帶狀區(qū)域中,說明選用的模型比較合適
D.用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$來刻畫回歸方程,R2越小,擬合的效果越好

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a為f(x)=-x3+12x的極大值點,則a=(  )
A.-4B.-2C.4D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)(x∈R)滿足f(-x)+f(x)=2,若函數(shù)y=x3+x+1與y=f(x)的圖象的交點從左到右依次為(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),則x1+x2+x3+x4+x5+y1+y2+y3+y4+y5=(  )
A.1B.4C.5D.8

查看答案和解析>>

同步練習冊答案