17.已知$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$,則(x-3)n的二項(xiàng)式系數(shù)的和32.

分析 根據(jù)$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$求出n的值,再計(jì)算(x-3)n的二項(xiàng)式系數(shù)和.

解答 解:$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$,
即${C}_{n}^{0}$+${C}_{n}^{1}$•2+${C}_{n}^{2}$•22+…+${C}_{n}^{n}$•2n=(1+2)n=3n=729,
解得n=5;
∴(x-3)5的二項(xiàng)式系數(shù)的和為:
25=32.
故答案為:32.

點(diǎn)評(píng) 本題考查了二項(xiàng)式系數(shù)和的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知y=f(x)是奇函數(shù),當(dāng)x∈(0,2)時(shí),f(x)=lnx-ax(a$>\frac{1}{2}$),當(dāng)x∈(-2,0)時(shí),f(x)的最小值為1,則a的值為( 。
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知方程ex-x-2=0有兩個(gè)解x1,x2,則( 。
A.區(qū)間(-2,0)上無(wú)解B.區(qū)間(0,1)上有一個(gè)解
C.x1+x2<0D.x1+x2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知向量$\vec m=(sinx,\sqrt{3}cosx)$,$\vec n=(cosx,cosx)$,設(shè)函數(shù)$f(x)=\vec m•\vec n-\frac{3}{2}\sqrt{3}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若$x∈[-\frac{π}{3},\frac{π}{6}]$,且$F(x)=f(x)-cos(4x+\frac{2π}{3})$,求F(x)的最大值;
(Ⅲ)若[f(x)]2-(2+m)f(x)+2+m≤0在x∈R上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某班學(xué)生考試成績(jī)中,數(shù)學(xué)不及格的占15%,語(yǔ)文不及格的占5%,兩門都不及格的占3%.已知一學(xué)生數(shù)學(xué)不及格,則他語(yǔ)文也不及格的概率是( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=2+log${\;}_{\frac{1}{2}}$x(x≥1)的值域是(-∞,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知Sn為等差數(shù)列{an}的前n項(xiàng)和,若a6+a10=4,則S15=30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.拋物線y=x2-1與直線y=x+1所圍成的平面圖形的面積是(  )
A.$\frac{9}{2}$B.$\frac{17}{4}$C.5D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30]20.05
合計(jì)M1
(1)求出表中M,p及圖中a的值;
(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15)的人數(shù);
(3)根據(jù)服務(wù)次數(shù)的頻率分布直方圖,求服務(wù)次數(shù)的中位數(shù)的估計(jì)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案