5.直線l與直線m:3x-y+2=0關(guān)于x軸對(duì)稱,則這兩直線與y軸圍成的三角形的面積為$\frac{4}{3}$.

分析 求出直線m:3x-y+2=0與坐標(biāo)軸的交點(diǎn),然后求解三角形面積.

解答 解:直線m:3x-y+2=0與x軸的交點(diǎn)為(-$\frac{2}{3}$,0),與y軸的交點(diǎn)為:(0,2).
直線l與直線m:3x-y+2=0關(guān)于x軸對(duì)稱,則這兩直線與y軸圍成的三角形的面積為:$\frac{1}{2}×\frac{2}{3}×4$=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查直線方程的應(yīng)用,對(duì)稱知識(shí)的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)已知cos(α+β)=-$\frac{3}{5}$,cos(α-β)=$\frac{1}{5}$,求tanα•tanβ的值.(α≠kπ+$\frac{π}{2}$,β≠kπ+$\frac{π}{2}$,k∈Z)
(2)在銳角△ABC中,且sin(A+B)=$\frac{3}{5}$,tanA=2tanB,AB=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.五種不同商品在貨架上排成一排,其中A,B兩種必須連排,而C,D兩種不能連排,則不同的排法共有(  )
A.48種B.24種C.20種D.12種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在圓x2+y2=5x內(nèi),過(guò)點(diǎn) (${\frac{5}{2}$,$\frac{3}{2}}$)有n條弦的長(zhǎng)度成等差數(shù)列,最小弦長(zhǎng)為數(shù)列的首項(xiàng)a1,最大弦長(zhǎng)為an,若公差d∈[${\frac{1}{6}$,$\frac{1}{3}}$],那么n的取值集合為(  )
A.{4,5,6,7}B.{4,5,6}C.{3,4,5,6}D.{3,4,5,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,B=45°,AC=$\sqrt{5}$,cosC=$\frac{{\sqrt{5},}}{5}$,求
(1)求BC的長(zhǎng);
(2)若點(diǎn)D是AB的中點(diǎn),求中線CD的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知a,b,c為實(shí)數(shù),且a+b+c=2m-2,a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2=1-m.
(1)求證:a2+$\frac{1}{4}$b2+$\frac{1}{9}$c2≥$\frac{(a+b+c)^{2}}{14}$;
(2)求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若關(guān)于x的不等式x2+(a-1)x+1<0有解,則實(shí)數(shù)a的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列四個(gè)說(shuō)法:
①a∥α,b?α,則a∥b;
②a∩α=P,b?α,則a與b不平行;
③a?α,則a∥α;
④a∥α,b∥α,則a∥b.
其中錯(cuò)誤的說(shuō)法的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案