【題目】斜率為1,過拋物線的焦點的直線被拋物線所截得的弦長為

A. 8 B. 6 C. 4 D. 10

【答案】A

【解析】由拋物線得x2=4yp=2,焦點F(0,1).

斜率為1且過焦點的直線方程為y=x+1.

代入x2=4y,消去x,可得y2﹣6y﹣1=0.

∴y1+y2=6.

直線截拋物線所得的弦長為y1++y2+=y1+y2+p=6+2=8

故選A.

點睛: 在解決與拋物線有關(guān)的問題時,要注意拋物線的定義在解題中的應用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義它到準線的距離為d,|MF|=d,可解決有關(guān)距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】將邊長為2的正沿著高折起,使,若折起后四點都在球的表面上,則球的表面積為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的不等式|x﹣3|+|x﹣m|≥2m的解集為R. (Ⅰ)求m的最大值;
(Ⅱ)已知a>0,b>0,c>0,且a+b+c=m,求4a2+9b2+c2的最小值及此時a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率e=,連接橢圓的四個頂點得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線過橢圓的左端點A,與橢圓的另一個交點為B.,AB的垂直平分線交軸于點,且·=4,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為(
A.a>0
B.a≤1
C.a>1
D.a≤0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣aex)有兩個極值點,則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中, 是橢圓 的右頂點, 是上頂點, 是橢圓位于第三象限上的任一點,連接, 分別交坐標軸于, 兩點.

(1)若點為左焦點且直線平分線段,求橢圓的離心率;

(2)求證:四邊形的面積是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax-lnx,a∈R.

(1)當a=1時,求曲線f(x)在點(2,f(2))處的切線方程;

(2)是否存在實數(shù)a,使f(x)在區(qū)間(0,e]的最小值是3,若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知無窮數(shù)列{an},a1=1,a2=2,對任意n∈N* , 有an+2=an , 數(shù)列{bn}滿足bn+1﹣bn=an(n∈N*),若數(shù)列 中的任意一項都在該數(shù)列中重復出現(xiàn)無數(shù)次,則滿足要求的b1的值為

查看答案和解析>>

同步練習冊答案