設(shè)函數(shù))在處均有極值,則下列點(diǎn)中一定在軸上的是(    )
A.B.C.D.
D  

試題分析:即均是方程的根,所以3a+2b+c=0,3a-2b+c=0,解得b=0,所以一定在軸上,選D。
點(diǎn)評(píng):典型題,利用導(dǎo)數(shù)求函數(shù)的極值,是高考常見(jiàn)題目。求極值的步驟:計(jì)算導(dǎo)數(shù)、求駐點(diǎn)、討論駐點(diǎn)附近導(dǎo)數(shù)的正負(fù)、確定極值。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)有最 大值,求實(shí)數(shù)的值
(2)解不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若函數(shù),在上是減少的,則的取值范圍是    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若解不等式;
(Ⅱ)如果,,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)上兩個(gè)零點(diǎn),則的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)閇0,1]的函數(shù)同時(shí)滿(mǎn)足以下三個(gè)條件:①對(duì)任意,總有;②;③若,則有成立.
(1) 求的值;(2) 函數(shù)在區(qū)間[0,1]上是否同時(shí)適合①②③?并予以證明
(3) 假定存在,使得,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B兩地的路程為240千米.某經(jīng)銷(xiāo)商每天都要用汽車(chē)或火車(chē)將噸保鮮品一次 性由A地運(yùn)往B地.受各種因素限制,下一周只能采用汽車(chē)和火車(chē)中的一種進(jìn)行運(yùn)輸,且須提前預(yù)訂.
現(xiàn)有貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表、行駛路程s(千米)與行駛時(shí)間t(時(shí))的函數(shù)圖象(如圖1)、上周貨運(yùn)量折線統(tǒng)計(jì)圖(如圖2)等信息如下:
貨運(yùn)收費(fèi)項(xiàng)目及收費(fèi)標(biāo)準(zhǔn)表
運(yùn)輸工具
運(yùn)輸費(fèi)單價(jià):元/(噸•千米)
冷藏費(fèi)單價(jià):元/(噸•時(shí))
固定費(fèi)用:元/次
汽車(chē)
2
5
200
火車(chē)
1.6
5
2280
          
(1)汽車(chē)的速度為       千米/時(shí),火車(chē)的速度為       千米/時(shí):
(2)設(shè)每天用汽車(chē)和火車(chē)運(yùn)輸?shù)目傎M(fèi)用分別為(元)和(元),分別求的函數(shù)關(guān)系式(不必寫(xiě)出的取值范圍),及為何值時(shí)(總費(fèi)用=運(yùn)輸費(fèi)+冷藏費(fèi)+固定費(fèi)用)
(3)請(qǐng)你從平均數(shù)、折線圖走勢(shì)兩個(gè)角度分析,建議該經(jīng)銷(xiāo)商應(yīng)提前為下周預(yù)定哪種運(yùn)輸工具,才能使每天的運(yùn)輸總費(fèi)用較?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
設(shè)函數(shù)。
(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。
(2)若上的最大值為,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)上為增函數(shù),則實(shí)數(shù)的取值范圍為(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案