如圖所示,在四棱錐中,底面為矩形,平面,點在線段上,平面.
(Ⅰ)證明:平面;
(Ⅱ)若,,求二面角的正切值.
(Ⅰ) 只需證 和 即可。(Ⅱ)3.
解析試題分析:(Ⅰ)因為平面,平面,所以………2分
又因為平面,平面,所以………4分
而,平面,平面
所以平面. …………6分
(Ⅱ)由(Ⅰ)可知平面,而平面,所以
而為矩形,所以為正方形,于是. ……7分
法1:以點為原點,、、為軸、軸、軸,建立空間直角坐標系.則、、、,于是,. …… ………8分
設(shè)平面的一個法向量為,則 ,從而,令,得………………9分
而平面的一個法向量為. ……………10分
所以二面角的余弦值為,
于是二面角的正切值為3. ………………12分
法2:設(shè)與交于點,連接.因為平面,平面,平面,所以,,于是就是二面角的平面角.又因為平面,平面,所以是直角三角形.由∽
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在正四棱錐V - ABCD中,P,Q分別為棱VB,VD的中點, 點M在邊BC上,且BM: BC = 1 : 3,AB =2,VA =" 6."
(I )求證CQ∥平面PAN;
(II)求證:CQ⊥AP.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐中,底面是矩形,平面,,,是的中點, 是線段上的點.
(I)當是的中點時,求證:平面;
(II)要使二面角的大小為,試確定點的位置.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,在四棱錐S - ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中點.
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點N是直線CD上的動點,MN與面SAB所成的角為,求sin的最大值,
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知直四棱柱ABCD—A′B′C′D′的底面是菱形,,E、F分別是棱CC′與BB′上的點,且EC=BC=2FB=2.
(1)求證:平面AEF⊥平面AA′C′C;
(2)求截面AEF與底面ABCD所成二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為 已知,,,,
(Ⅰ)設(shè)點是的中點,證明:平面;
(Ⅱ)求二面角的大小;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 如圖,在四棱錐中,底面是正方形,側(cè)棱⊥底面,,是的中點,作交于點
(1) 證明//平面;
(2) 證明⊥平面;
(3) 求二面角——的大小。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖所示,在長方體中,,,是棱上一點,
(1)若為CC1的中點,求異面直線A1M和C1D1所成的角的正切值;
(2)是否存在這樣的,使得平面ABM⊥平面A1B1M,若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com