19.已知數(shù)列{an}滿足a1=2,an+1=4an+3,求數(shù)列{an}的通項公式.

分析 根據(jù)數(shù)列遞推式,變形可得數(shù)列{an+1}是以3為首項,以4為公比的等比數(shù)列,由此可得結論.

解答 解:由題意an+1=4an+3可以得到an+1+1=4an+3+1=4(an+1)
所以數(shù)列{an+1}是以a1+1=3為首項,以4為公比的等比數(shù)列.
則有an+1=3×4n-1,
所以an=3×4n-1-1.

點評 本題考查數(shù)列遞推式,考查等比數(shù)列的判定,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.在下列各數(shù)中,最大的數(shù)是( 。
A.85(9)B.11111(2)C.68(8)D.210(6)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知直線l1:y=3x-4和直線l2:關于點M(2,1)對稱,則l2的方程為3x-y-6=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=x+alnx(a∈R),g(x)=ex-1
(1)若直線y=0與函數(shù)y=f(x)的圖象相切,求a的值;
(2)設a>0,對于?x1,x2∈[3,+∞)(x1≠x2)都有|f(x1)-f(x2)|<|g(x1)-g(x2)|,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.數(shù)列{an}的a1=$\frac{3}{7}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,{an}的通項公式是an=$\frac{{3}^{n}}{{3}^{n}+4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知函數(shù)f(x)的導函數(shù)為f'(x),對一切的x∈R都有f'(x)>f(x)成立,對任意正數(shù)a,b,若a<b,則有( 。
A.bf(lna)<af(lnb)B.bf(lna)=af(lnb)
C.bf(lna)>af(lnb)D.bf(lna)與af(lnb)的大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若a,b,c∈R,且$a={x^2}-2y+\frac{π}{2},b={y^2}-2z+\frac{π}{3},c={z^2}-2x+\frac{π}{6}$,則下列說法正確的是(  )
A.a,b,c都大于0B.a,b,c中至少有一個大于0
C.a,b,c都小于0D.a,b,c中至多有一個大于0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知隨機變量ξ服從二項分布$ξ\~B(6,\frac{1}{2})$,則P(ξ=2)的值為$\frac{15}{64}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)y=f(x)的圖象在點M(1,f(1))處的切線方程是y=3x-2,則f(1)+f'(1)的值為( 。
A.1B.2C.4D.3

查看答案和解析>>

同步練習冊答案