A. | 2 | B. | 6 | C. | 12 | D. | 3+2$\sqrt{2}$ |
分析 根據(jù)直線2mx-ny-2=0(m>0,n>0)過點(1,-2),建立m,n的關(guān)系,利用基本不等式即可求$\frac{1}{m}$+$\frac{2}{n}$的最小值.
解答 解:∵直線2mx-ny-2=0(m>0,n>0)過點(1,-2),
∴2m+2n-2=0,即m+n=1,
∵$\frac{1}{m}$+$\frac{2}{n}$=($\frac{1}{m}$+$\frac{2}{n}$)(m+n)=3+$\frac{n}{m}$+$\frac{2m}{n}$≥3+2$\sqrt{2}$,
當且僅當$\frac{n}{m}$=$\frac{2m}{n}$,即n=$\sqrt{2}$m時取等號,
∴$\frac{1}{m}$+$\frac{2}{n}$的最小值為3+2$\sqrt{2}$,
故選:D.
點評 本題主要考查基本不等式的應用,利用點與直線的關(guān)系得到m+n=1是解決本題的關(guān)鍵,注意不等式成立的條件.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1+2i | B. | 1-2i | C. | 3+2i | D. | 3-2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 15 | B. | 14 | C. | 13 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,都有x2>1 | B. | ?x∈R,都有-1≤x≤1 | C. | ?x∈R,使得-1≤x≤1 | D. | ?x∈R,使得x2>1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com