16.已知{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則a2=4.

分析 利用Sn=2an-2,n分別取1,2,則可求a2的值.

解答 解:n=1時(shí),S1=2a1-2,∴a1=2,
n=2時(shí),S2=2a2-2,
∴a2=a1+2=4.
故答案為:4.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.定義在實(shí)數(shù)集R上的函數(shù)y=f(x)具有下列兩條性質(zhì):
①對(duì)于任意x∈R,都有f(x3)=[f(x)]3
②對(duì)于任意x1,x2∈R,當(dāng)x1≠x2時(shí),都有f(x1)≠f(x2).則f(-1)+f(0)+f(1)的值為( 。
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)f(x)是定義在R上且f(x+2)=f(2-x),f(7-x)=f(7+x),在閉區(qū)間[0,7]上,使f(x)=0的x值僅為1和3.
(1)判斷函數(shù)f(x)的奇偶性;
(2)試求方程f(x)=0在閉區(qū)間[-2016,2016]上根的個(gè)數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)y=-$\sqrt{x+2}$(2≤x≤14),設(shè)其值域?yàn)榧螦,集合B={x|y=lg[kx2+(2k-4)x+k-4],x∈R}.
(1)求集合A;
(2)若A∪B=B,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.若sinα=$\frac{\sqrt{10}}{10}$,β=arccos(-$\frac{\sqrt{5}}{5}$),0<α<$\frac{π}{2}$,求證:α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知等比數(shù)列{an}的公比為$-\frac{1}{2}$,則$\frac{{{a_1}+{a_3}+{a_5}}}{{{a_2}+{a_4}+{a_6}}}$的值是(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U=R,集合A={x|0<x<2},B={x|x<1},則集合(∁UA)∩B=( 。
A.(-∞,0)B.(-∞,0]C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,過點(diǎn)F的直線與橢圓交于點(diǎn)A,B,若AB中點(diǎn)為(1,-$\frac{1}{2}$),且直線AB的傾斜角為45°,則橢圓方程為( 。
A.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1C.$\frac{2{x}^{2}}{9}$+$\frac{4{y}^{2}}{9}$=1D.$\frac{{x}^{2}}{9}$+$\frac{2{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從5人中選3人參加座談會(huì),其中甲必須參加,則不同的選法有( 。
A.12種B.6種C.5種D.4種

查看答案和解析>>

同步練習(xí)冊(cè)答案