已知函數(shù)y=sin(2x+
π
6
)的圖象為曲線C,函數(shù)y=sin(2x-
π
3
)的圖象為曲線C′,可將曲線C沿x軸向右至少平移
 
個(gè)單位,得到曲線C′.
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:把y=sin(2x-
π
3
)變形為y=sin[2(x-
π
4
)+
π
6
],然后直接根據(jù)函數(shù)的圖象平移原則得答案.
解答: 解:∵y=sin(2x-
π
3
)=sin[2(x-
π
4
)+
π
6
],
∴y=sin(2x-
π
3
)是把y=sin(2x+
π
6
)的圖象至少向右平移
π
4
個(gè)單位得到.
故答案為:
π
4
點(diǎn)評(píng):本題主要考查三角函數(shù)的平移.三角函數(shù)的平移原則為左加右減上加下減,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓N的標(biāo)準(zhǔn)方程為(x-5)2+(y-6)2=a2(a>0)
(1)若點(diǎn)M(6,9)在圓上,求a的值;
(2)已知點(diǎn)P(3,3)和點(diǎn)Q(5,3),線段PQ(不含端點(diǎn))與圓N有且只有一個(gè)公共點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,an+1=2an-n+1(n∈N*),數(shù)列{an}的前n項(xiàng)和為Sn
(1)證明:數(shù)列{an-n}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求Sn
(3)證明:Sn+1>Sn+2n+n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓心在原點(diǎn),并與直線3x-4y-10=0相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1
3
cos(x+
π
7
)
的圖象為C,為了得到函數(shù)y=
1
3
cos(x-
π
7
)
的圖象只需把C上所有的點(diǎn)(  )
A、向右平行移動(dòng)
π
7
個(gè)單位長(zhǎng)度
B、向左平行移動(dòng)
π
7
個(gè)單位長(zhǎng)度
C、向右平行移動(dòng)
7
個(gè)單位長(zhǎng)度
D、向左平行移動(dòng)
7
個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用輾轉(zhuǎn)相除法或更相減損術(shù)求115、161的最大公約數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x+1)=3x+4,則f(x)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的偶函數(shù)f(x)在(-∞,0]上為減函數(shù),且f(
1
2
)=0,則不等式f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示程序框圖,那么輸出的數(shù)是( 。
A、5050B、4900
C、2550D、2450

查看答案和解析>>

同步練習(xí)冊(cè)答案