【題目】(1axby)n的展開(kāi)式中不含y的項(xiàng)的系數(shù)的絕對(duì)值的和為32,則a,n的值可能為( )

A.a=2,n=5B.a=1n=6C.a=-1,n=5D.a=1n=5

【答案】CD

【解析】

每個(gè)(1axby)中取1,axby之一求得乘積構(gòu)成(1axby)n的展開(kāi)式中的每一項(xiàng),利用組合知識(shí)得出所有系數(shù)的絕對(duì)值,結(jié)合二項(xiàng)式定理即可得解.

(1axby)n的展開(kāi)式可以看成n個(gè)(1axby),每個(gè)(1axby)中取1ax,by之一求得乘積構(gòu)成的每一項(xiàng),

(1axby)n的展開(kāi)式中不含y的項(xiàng)的系數(shù)的絕對(duì)值的和為32,

,即

結(jié)合四個(gè)選項(xiàng)則a,n的值可能為:a=-1n=5,或a=1n=5

故選:CD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點(diǎn),動(dòng)點(diǎn)P在線段MN上運(yùn)動(dòng)時(shí),下列四個(gè)結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )

A.①③B.③④C.①②D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從參加高二年級(jí)期末考試的學(xué)生中抽出60名學(xué)生,并統(tǒng)計(jì)了他們的化學(xué)成績(jī)(成績(jī)均為整數(shù)且滿分為100分),把其中不低于50分的分成五段,,…,后畫(huà)出如圖部分頻率分布直方圖.觀察圖形的信息,回答下列問(wèn)題:

(1)求出這60名學(xué)生中化學(xué)成績(jī)低于50分的人數(shù);

(2)估計(jì)高二年級(jí)這次考試化學(xué)學(xué)科及格率(60分以上為及格);

(3)從化學(xué)成績(jī)不及格的學(xué)生中隨機(jī)調(diào)查1人,求他的成績(jī)低于50分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】今天你低碳了嗎?近來(lái)國(guó)內(nèi)網(wǎng)站流行一種名為“碳排放計(jì)算器”的軟件,人們可以由此計(jì)算出自己每天的碳排放量,如家居用電的碳排放量(千克)耗電度數(shù),汽車(chē)的碳排放量(千克)油耗公升數(shù)等,某班同學(xué)利用寒假在兩個(gè)小區(qū)逐戶進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查.若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,這二族人數(shù)占各自小區(qū)總?cè)藬?shù)的比例數(shù)據(jù)如下:

小區(qū)

低碳族

非低碳族

小區(qū)

低碳族

非低碳族

比例

1/2

1/2

比例

4/5

1/5

1)如果甲、乙來(lái)自小區(qū),丙、丁來(lái)自小區(qū),求這4人中恰好有兩人是低碳族的概率;

2小區(qū)經(jīng)過(guò)大力宣傳,每周非低碳中有20%的人加入到低碳族的行列,如果兩周后隨機(jī)地從小區(qū)中任選5個(gè)人,記表示5個(gè)人中的低碳族人數(shù),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】試求出正整數(shù)的最小可能值,使得下述命題成立:對(duì)于任意的個(gè)整數(shù)(允許相等),必定存在相應(yīng)的個(gè)整數(shù)(也允許相等),且,,使得2003能整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某產(chǎn)品在3-7月份銷(xiāo)售量與利潤(rùn)的統(tǒng)計(jì)數(shù)據(jù)如下表:

月份

3

4

5

6

7

銷(xiāo)售量(單位:萬(wàn)件)

3

6

4

7

8

利潤(rùn)(單位:萬(wàn)元)

19

34

26

41

46

1)從這5個(gè)月的利潤(rùn)中任選2個(gè)值,分別記為,求事件“均小于45”的概率;

2)已知銷(xiāo)售量與利潤(rùn)大致滿足線性相關(guān)關(guān)系,請(qǐng)根據(jù)前4個(gè)月的數(shù)據(jù),求出關(guān)于的線性回歸方程;

3)若由線性回歸方程得到的利潤(rùn)的估計(jì)數(shù)據(jù)與真實(shí)數(shù)據(jù)誤差不超過(guò)2萬(wàn)元,則認(rèn)為得到的利潤(rùn)估計(jì)是理想的.請(qǐng)用表格中7月份的數(shù)據(jù)檢驗(yàn)由(2)中回歸方程所得的該月的利潤(rùn)的估計(jì)數(shù)據(jù)是否理想?

參考公式,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三角形的三邊長(zhǎng)是成等差數(shù)列的正整數(shù),其最長(zhǎng)邊不大于正整數(shù)時(shí)的三角形個(gè)數(shù)記為(凡全等的三角形只算1個(gè)).寫(xiě)出,,,再找出的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn)

1)求圓的圓心坐標(biāo);

2)求線段的中點(diǎn)的軌跡的方程;

3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asin B=-bsin.

(1)求A;

(2)若△ABC的面積S=c2,求sin C的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案