【題目】已知拋物線(xiàn)C:,過(guò)焦點(diǎn)F的直線(xiàn)l與拋物線(xiàn)C交于M,N兩點(diǎn).
(1)若直線(xiàn)l的傾斜角為,求的長(zhǎng);
(2)設(shè)M在準(zhǔn)線(xiàn)上的射影為A,求證:A,O,N三點(diǎn)共線(xiàn)(O為坐標(biāo)原點(diǎn)).
【答案】(1)8;(2)見(jiàn)解析
【解析】
(1)由題意知直線(xiàn)l的方程,與拋物線(xiàn)聯(lián)立求出兩根之和及兩根之積,進(jìn)而求出弦長(zhǎng):
(2)設(shè)直線(xiàn)l的方程與拋物線(xiàn)聯(lián)立求出兩根之積,得出縱坐標(biāo)之間的關(guān)系,求出,的斜率,值相等,結(jié)合兩直線(xiàn)有公共點(diǎn)O可得三點(diǎn)共線(xiàn).
解:(1)由題意知拋物線(xiàn)的焦點(diǎn),直線(xiàn)l的傾斜角為,則直線(xiàn)的斜率為1,
所以直線(xiàn)l的方程:,設(shè),,聯(lián)立直線(xiàn)與拋物線(xiàn)的方程整理得:,
所以,,
所以弦長(zhǎng),
所以的長(zhǎng)為8;
(2)顯然直線(xiàn)l的斜率不為0,設(shè)直線(xiàn)方程為:,設(shè),,由題意知,
聯(lián)立直線(xiàn)與拋物線(xiàn)的方程整理為:,,,
因?yàn)?/span>,
∴,,又有公共點(diǎn),
所以A,O,N三點(diǎn)共線(xiàn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李先生的網(wǎng)店經(jīng)營(yíng)堅(jiān)果類(lèi)食品,一年中各月份的收入、支出(單位:百元)情況的統(tǒng)計(jì)如圖所示,下列說(shuō)法中錯(cuò)誤的是( )
A. 2至3月份的收入的變化率與11至12月份的收入的變化率相同
B. 支出最高值與支出最低值的比是
C. 第三季度平均收入為5000元
D. 利潤(rùn)最高的月份是2月份
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系平面上的一列點(diǎn),,…,,記為,若由構(gòu)成的數(shù)列滿(mǎn)足,,其中為與軸正方向相同的單位向量,則稱(chēng)為點(diǎn)列.
(1)判斷,,,…,,是否為點(diǎn)列,并說(shuō)明理由;
(2)若為點(diǎn)列.且點(diǎn)在點(diǎn)的右上方,(即)任取其中連續(xù)三點(diǎn),,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為點(diǎn)列,正整數(shù),滿(mǎn)足.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里有大小相同的3個(gè)紅球和3個(gè)黑球,從盒子里隨機(jī)取球,取到每個(gè)球的可能性是相同的,設(shè)取到一個(gè)紅球得1分,取到一個(gè)黑球得0分.
(Ⅰ)若從盒子里一次隨機(jī)取出了3個(gè)球,求得2分的概率;
(Ⅱ)著從盒子里每次摸出一個(gè)球,看清顏色后放回,連續(xù)摸3次,求得分ξ的概率分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,從直線(xiàn)上一點(diǎn)P向圓引兩條切線(xiàn),,切點(diǎn)分別為C,D.設(shè)線(xiàn)段的中點(diǎn)為M,則線(xiàn)段長(zhǎng)的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:若,則;
(2)當(dāng)時(shí),試討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形為正方形,平面,,,.
(Ⅰ)求證:平面;
(Ⅱ)求與平面所成角的正弦值;
(Ⅲ)在棱上是否存在一點(diǎn),使得平面平面?如果存在,求的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為,點(diǎn)是曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)在的延長(zhǎng)線(xiàn)上,且,點(diǎn)的軌跡為.
(1)求直線(xiàn)及曲線(xiàn)的極坐標(biāo)方程;
(2)若射線(xiàn)與直線(xiàn)交于點(diǎn),與曲線(xiàn)交于點(diǎn)(與原點(diǎn)不重合),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com