【題目】在直角坐標系平面上的一列點,,…,,記為,若由構(gòu)成的數(shù)列滿足,,其中為與軸正方向相同的單位向量,則稱為點列.
(1)判斷,,,…,,是否為點列,并說明理由;
(2)若為點列.且點在點的右上方,(即)任取其中連續(xù)三點,,判斷的形狀(銳角三角形,直角三角形,鈍角三角形),并給予證明;
(3)若為點列,正整數(shù),滿足.求證:.
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列的公差,前項和為,且滿足,
(1)試尋找一個等差數(shù)列和一個非負常數(shù),使得等式對于任意的正整數(shù)恒成立,并說明你的理由;
(2)對于(1)中的等差數(shù)列和非負常數(shù),試求()的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市為了解社區(qū)群眾體育活動的開展情況,擬采用分層抽樣的方法從A,B,C三個行政區(qū)抽出6個社區(qū)進行調(diào)查.已知A,B,C行政區(qū)中分別有12,18,6個社區(qū).
(1)求從A,B,C三個行政區(qū)中分別抽取的社區(qū)個數(shù);
(2)若從抽得的6個社區(qū)中隨機的抽取2個進行調(diào)查結(jié)果的對比,求抽取的2個社區(qū)中至少有一個來自A行政區(qū)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為評估設備生產(chǎn)某種零件的性能,從設備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑 | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.
(1)將直徑小于等于或直徑大于的零件認為是次品,從設備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學期望;
(2)為評判一臺設備的性能,從該設備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設備的性能等級并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過定點的動圓是與圓相內(nèi)切.
(1)求動圓圓心的軌跡方程;
(2)設動圓圓心的軌跡為曲線,是曲線上的兩點,線段的垂直平分線過點,求面積的最大值(是坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一盒子中有8個大小完全相同的小球,其中3個紅球,2個白球,3個黑球.
(Ⅰ)若不放回地從盒中連續(xù)取兩次球,每次取一個,求在第一次取到紅球的條件下,第二次也取到紅球的概率;
(Ⅱ)若從盒中任取3個球,求取出的3個球中紅球個數(shù)X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知拋物線C:的焦點為F,過F的直線交拋物線C于A,B兩點.
(1)求線段AF的中點M的軌跡方程;
(2)已知△AOB的面積是△BOF面積的3倍,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:,過焦點F的直線l與拋物線C交于M,N兩點.
(1)若直線l的傾斜角為,求的長;
(2)設M在準線上的射影為A,求證:A,O,N三點共線(O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com