正四面體的四個(gè)頂點(diǎn)都在一個(gè)球面上,且正四面體的高為4,則球的表面積為( 。
A.16(12-6
3
B.18πC.36πD.64(6-4
2
如圖所示:設(shè)正四面體的棱長(zhǎng)等于a,球的半徑等于r,作AH垂直于平面BCD,H為垂足.
則BH=
2
3
•BD
=
2
3
3
2
a
=
3
3
a,故AH=
AB2-BH2
=
a2-(
3
a
3
)
2
=
6
3
a

再由AH=4,可得
6
3
a
=4,∴a=
12
6

Rt△BOH中,由勾股定理可得 r2=(4-r)2+(
3
3
a)
2
,解得r=3.
故球的表面積為4πr2=36π,
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=a(a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個(gè)三棱錐的體積;若不是定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

一個(gè)正方體的各頂點(diǎn)均在同一球的球面上,若該球的體積為4
3
π
,則該正方體的表面積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知正方體ABCD-A1B1C1D1,則三棱錐D1-AB1C的體積與正方體ABCD-A1B1C1D1的體積之比為( 。
A.1:3B.1:4C.1:2D.1:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知圓錐的底面半徑為3,體積是12π,則圓錐側(cè)面積等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若一個(gè)球的體積擴(kuò)大為原來(lái)的8倍,則其表面積擴(kuò)大為原來(lái)的______倍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)頂點(diǎn)為B(0,4),離心率e=
5
5
,直線l交橢圓于M、N兩點(diǎn).
(1)若直線l的方程為y=x-4,求弦MN的長(zhǎng);
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線l方程的一般式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4,D是AB中點(diǎn),E是AC的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)求異面直線AB與DE所成的角;
(2)若M,N分別為棱AC,BC上的動(dòng)點(diǎn),求△DMN周長(zhǎng)的平方的最小值;
(3)在三棱錐D-ABC的外接球面上,求A,B兩點(diǎn)間的球面距離和外接球體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列說(shuō)法不正確的是( 。
A.如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),則這條直線的所有點(diǎn)都在這個(gè)平面內(nèi)
B.如果兩個(gè)平面有一個(gè)公共點(diǎn),則它們還有其他公共點(diǎn),且它們都在一條直上
C.三點(diǎn)確定一個(gè)平面
D.平行于同一條直線的兩條直線互相平行

查看答案和解析>>

同步練習(xí)冊(cè)答案