5.命題“若a=b,則|a|=|b|”的逆否命題是若|a|≠|(zhì)b|,則a≠b.

分析 根據(jù)已知中的原命題,結(jié)合逆否命題的定義,可得答案.

解答 解:命題“若a=b,則|a|=|b|”的逆否命題是命題“若|a|≠|(zhì)b|,則a≠b”,
故答案為:“若|a|≠|(zhì)b|,則a≠b”

點評 本題考查的知識點是四種命題,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知cos(2π-α)=-$\frac{4}{5}$,且α為第三象限角,
(1)求cos($\frac{π}{2}$+α)的值;
(2)求f(α)=$\frac{tan(π-α)•sin(π-α)•sin(\frac{π}{2}-α)}{cos(π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=sin($\frac{3π}{2}$+x)cos($\frac{π}{6}$-x)的最大值為$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[-3,-2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是( 。
A.f(sinA)>f(sinB)B.f(cosA)>f(cosB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知向量$\overrightarrow{AB}=(6,1)$,$\overrightarrow{BC}=(x,y)$,$\overrightarrow{CD}=(-2,-3)$,若$\overrightarrow{BC}∥\overrightarrow{AD}$,試求x與y之間的表達式.

(2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A、B、C三點滿足$\overrightarrow{OC}=\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$,求證:A、B、C三點共線,并求$\frac{{|\overrightarrow{AC}|}}{{|\overrightarrow{CB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,拋物線C:y2=4x的焦點為F,P為拋物線C上一點,且PF=5,則點P的橫坐標(biāo)是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4;
(2)猜想{an}的通項公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD為菱形,∠BAD=60°,PA=PD=AD=2,點M在線段PC上,N為AD的中點.
(1)求證:BC⊥平面PNB
(2)若平面PAD⊥平面ABCD,M是線段PC上一點,且二面角M-BN-D為60°,試確定M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某初中三個年級學(xué)生人數(shù)總數(shù)是1700人,其中七年級600人,八年級540人,九年級560人.采用分層抽樣的方法調(diào)查學(xué)生視力情況,在抽取樣本中,七年級有240人,則該樣本的九年級人數(shù)為(  )
A.180B.198C.220D.224

查看答案和解析>>

同步練習(xí)冊答案