分析 (1)由數(shù)列{an}的遞推公式依次求出a2,a3,a4;
(2)根據(jù)a2,a3,a4值的結(jié)構(gòu)特點(diǎn)猜想{an}的通項(xiàng)公式,再用數(shù)學(xué)歸納法①驗(yàn)證n=1成立,②假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立
解答 解:(1)令n=1,-2a2+3=0,a2=$\frac{3}{2}$,
令n=2,-$\frac{3}{2}$a3-$\frac{3}{2}$+4=0,a3=$\frac{5}{3}$,
令n=3,-$\frac{4}{3}$a4-$\frac{5}{3}$+4=0,a4=$\frac{7}{4}$.
(2)猜想an=$\frac{2n-1}{n}$(n∈N*).
證明:當(dāng)n=1時(shí),a1=1=$\frac{2-1}{1}$,所以an=$\frac{2n-1}{n}$成立,
假設(shè)當(dāng)n=k時(shí),an=$\frac{2n-1}{n}$成立,即ak=$\frac{2k-1}{k}$,
則(ak-3)ak+1-ak+4=0,即($\frac{2k-1}{k}$-3)ak+1-$\frac{2k-1}{k}$+4=0,
所以$\frac{k+1}{k}$ak+1=$\frac{2k+1}{k}$,即ak+1=$\frac{2k+1}{k+1}$=$\frac{2(k+1)-1}{k+1}$,
所以當(dāng)n=k+1時(shí),結(jié)論an=$\frac{2n-1}{n}$成立.
綜上,對(duì)任意的n∈N*,an=$\frac{2n-1}{n}$成立.
點(diǎn)評(píng) 本題考查數(shù)列遞推關(guān)系式的應(yīng)用,數(shù)學(xué)歸納法證明數(shù)列問(wèn)題的方法,考查邏輯推理能力,計(jì)算能力.注意在證明n=k+1時(shí)用上假設(shè),化為n=k的形式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過(guò)定點(diǎn)(-1,1) | |
B. | 函數(shù)$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函數(shù) | |
C. | 函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù) | |
D. | 函數(shù)f(x)=x2+4x+2在(0,+∞)上是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(1)<f(-2)<f(3) | B. | f(-2)<f(1)<f(3) | C. | f(3)<f(-2)<f(1) | D. | f(3)<f(1)<f(-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | -3 | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com