7.命題“若xy=0,則x2+y2=0”與它的逆命題、否命題、逆否命題中,真命題的個數(shù)為2.

分析 判斷原命題和逆命題的真假,根據(jù)互為逆否的兩個命題真假性相同,可得答案.

解答 解:命題“若xy=0,則x2+y2=0”為假命題,
故其逆否命題也為假,
其逆命題“若x2+y2=0,則xy=0”為真命題,
故其否命題也為真,
故真命題的個數(shù)為2個,
故答案為:2.

點評 本題以命題的真假判斷與應(yīng)用為載體,考查了四種命題,實數(shù)的性質(zhì)等知識點,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定義域為( 。
A.{x|x≥-3且x≠-2}B.{x|x≥-3且x≠2}C.{x|x≥-3}D.{x|x≥-2且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列說法正確的個數(shù)有(  )
(1)三角形、梯形一定是平面圖形;
(2)若四邊形的兩條對角線相交于一點,則該四邊形是平面圖形;
(3)三條平行線最多可確定三個平面;
(4)平面α和β相交,它們只有有限個公共點;
(5)若A,B,C,D四個點既在平面α內(nèi),又在平面β內(nèi),則這兩平面重合.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在平面直角坐標(biāo)系中,不等式組$\left\{\begin{array}{l}{x+2y≥0}\\{2x-y≥0(a>0)}\\{x≤a}\end{array}\right.$表示的平面區(qū)域的面積為5,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知m,n∈R,f(x)=x2-mnx.
(1)當(dāng)n=1時,解關(guān)于x的不等式:f(x)>2m2
(2)若m>0,n>0,且m+n=1,證明:$f(\frac{1}{m})+f(\frac{1}{n})≥7$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某四面體的三視圖如圖所示,該四面體的體積的是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x,則下列結(jié)論正確的是( 。
A.f(x)的圖象關(guān)于點$(\frac{2π}{3},0)$中心對稱
B.f(x)在$[0,\frac{π}{6}]$上單調(diào)遞增
C.把f(x)的圖象向左平移$\frac{π}{12}$個單位后關(guān)于y軸對稱
D.f(x)的最小正周期為4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.己知四棱錐P-ABCD底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,F(xiàn)是BC的中點
(1)證明:面PDF⊥面PAF.
(2)PA=2,求三棱錐P-ADF外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知m、n∈R+,且m+n=2,則mn有最大值1.

查看答案和解析>>

同步練習(xí)冊答案