已知f(x)=ax-lnx(x∈(0,e]),其中e是自然常數(shù),a∈R
(Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
【答案】
分析:(I)把a=1代入原函數(shù),求出其導(dǎo)函數(shù),即可求f(x)的單調(diào)性、極值;
(II)先求出其導(dǎo)函數(shù),通過分類討論分別求出導(dǎo)數(shù)為0的根,以及單調(diào)性和極值,再與f(x)的最小值是3相結(jié)合,即可得出結(jié)論.
解答:解:(I)當(dāng)a=1時,f(x)=x-lnx,
則
(1分)
且x∈(0,e]得x∈[1,e)單調(diào)遞增;(3分)
且x∈(0,e]得x∈(0,1)單調(diào)遞減;(5分)
當(dāng)x=1時取到極小值1;(6分)
(II)
(7分)
①當(dāng)a≤0時,f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;(9分)
②當(dāng)a>0時,f′(x)=0的根為
當(dāng)
時,
,解得a=e
2(12分)
③當(dāng)
時,f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;(14分)
綜上所述a=e
2(15分)
點評:本題主要考查導(dǎo)數(shù)的應(yīng)用.導(dǎo)數(shù)一般應(yīng)用在求切線的斜率極其方程,求函數(shù)的單調(diào)區(qū)間以及極值,和求在某個區(qū)間上的最值問題上.導(dǎo)數(shù)的應(yīng)用是高考考查的重點,須重視.