如圖,在四面體ABCD中,AB=1,AD=2
3
,BC=3,CD=2,∠ABC=∠DCB=
π
2
,則二面角A-BC-D的大小為(  )
A、
π
6
B、
π
3
C、
3
D、
6
考點:二面角的平面角及求法
專題:空間角
分析:
AB
CD
的夾角是θ二面角A-BC-D的平面角=π-θ,由
AD
2
=(
AB
+
BC
+
CD
2,能求出二面角A-BC-D的平面角.
解答: 解:設(shè)
AB
CD
的夾角是θ
二面角A-BC-D的平面角=π-θ,
∵在四面體ABCD中,AB=1,AD=2
3
,BC=3,CD=2,∠ABC=∠DCB=
π
2
,
AD
=
AB
+
BC
+
CD
,
AD
2
=(
AB
+
BC
+
CD
2
=
AB
2+
BC
2+
CD
2+2|
AB
|•|
BC
|•cos∠ABC+2|
AB
|•|
CD
|•cosθ+2|
BC
|•|
CD
|•cos(180°-∠BCD)
∴12=1+9+4+0+2×1×2×cosθ+0
解得cosθ=-
1
2
,∴θ=
3
°
∴二面角A-BC-D的平面角為π-
3
=
π
3

故選:B.
點評:本題考查二面角的求法,是中檔題,解題時要認(rèn)真審題,注意向量法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,奇函數(shù)f(x)=x3+ax2+bx+c在[1,+∞)上單調(diào),則a,b,c應(yīng)滿足的條件是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知E、F分別為正方體ABCD-A1B1C1D1的棱BC,CC1的中點,設(shè)α為二面角D-AE-D1的平面角,求sinα=( 。
A、
2
3
B、
5
3
C、
2
3
D、
2
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα+cosα=
17
13
,則sinα•cosα的值為( 。
A、
60
169
B、-
60
169
C、
60
196
D、-
60
196

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E1、F1分別是A1B1、C1D1上的點,并且4B1E1=4D1F1=A1B1,則BE1與DF1所成角的余弦值是( 。
A、
3
2
B、
1
2
C、
8
17
D、
15
17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c(a,b,c∈R)在x=-
2
3
與x=1時都取得極值.
(1)求a,b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)g(x)=f(x)-2c在區(qū)間[-1,2]內(nèi)恰有兩個零點,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、M三點不共線,對于平面ABM外任意一點O,若
OB
+
OM
=3
OP
-
OA
,則點P與A、B、M( 。
A、共面B、共線
C、不共面D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)證明:A1C⊥平面AB1C1;
(2)若D是棱CC1的中點,在棱AB上是否存在一點E,使DE∥平面AB1C1
(3)求三棱錐A1-AB1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某新生嬰兒成長過程中時間x(月)與相應(yīng)的體重y(公斤)的幾組對照數(shù)據(jù).
 x0123
 y33.54.55
(1)如y與x具有較好的線性關(guān)系,請根據(jù)表中提供的數(shù)據(jù),求出線性回歸方程:
?
y
=bx+a;
(2)由此推測當(dāng)嬰兒生長到五個月時的體重為多少?
參考公式:a=
.
y
-b
.
x
,b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2

查看答案和解析>>

同步練習(xí)冊答案