設函數(shù).
(1)求的單調區(qū)間和極值;
(2)若關于的方程有3個不同實根,求實數(shù)a的取值范圍.
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)當a>0時,判斷f(x)在定義域上的單調性;
(2)f(x)在[1,e]上的最小值為,求實數(shù)a的值;
(3)試求實數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某水產養(yǎng)殖場擬造一個無蓋的長方體水產養(yǎng)殖網箱,為了避免混養(yǎng),箱中要安裝一些篩網,其平面圖如下,如果網箱四周網衣(圖中實線部分)建造單價為每米56元,篩網(圖中虛線部分)的建造單價為每米48元,網箱底面面積為160平方米,建造單價為每平方米50元,網衣及篩網的厚度忽略不計.
(1)把建造網箱的總造價y(元)表示為網箱的長x(米)的函數(shù),并求出最低造價;
(2)若要求網箱的長不超過15米,寬不超過12米,則當網箱的長和寬各為多少米時,可使總造價最低?(結果精確到0.01米)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)在時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出,的值;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(弧度),將綠化帶總長度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長度最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設函數(shù)f(x)定義在(0,+∞)上,f(1)=0,導函數(shù),.
(1)求的單調區(qū)間和最小值;
(2)討論與的大小關系;
(3)是否存在x0>0,使得|g(x)﹣g(x0)|<對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com