設函數(shù).
(1)求的單調區(qū)間和極值;
(2)若關于的方程有3個不同實根,求實數(shù)a的取值范圍.

(1)詳見解析;(2).

解析試題分析:(1)首先求出函數(shù)的導數(shù),然后根據(jù)導數(shù)與單調區(qū)間的關系確定函數(shù)的單調區(qū)間;
(2)由(1)的分析可知y=f(x)圖象的大致形狀及走向,可知函數(shù)圖象的變化情況,可知方程f(x)=a有3個不同實根,求得實數(shù)a的值. .
(1)                  1分
得:                            2分
變化時,的變化情況如下表:









0

0



極大

極小

 
所以的增區(qū)間是,減區(qū)間是;       6分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ln x-
(1)當a>0時,判斷f(x)在定義域上的單調性;
(2)f(x)在[1,e]上的最小值為,求實數(shù)a的值;
(3)試求實數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中
(1) 當時,求曲線在點處的切線方程;
(2) 求函數(shù)的單調區(qū)間及在上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線
(1)試求曲線在點處的切線方程;
(2)試求與直線平行的曲線C的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若函數(shù)的圖像與直線恰有兩個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某水產養(yǎng)殖場擬造一個無蓋的長方體水產養(yǎng)殖網箱,為了避免混養(yǎng),箱中要安裝一些篩網,其平面圖如下,如果網箱四周網衣(圖中實線部分)建造單價為每米56元,篩網(圖中虛線部分)的建造單價為每米48元,網箱底面面積為160平方米,建造單價為每平方米50元,網衣及篩網的厚度忽略不計.
(1)把建造網箱的總造價y(元)表示為網箱的長x(米)的函數(shù),并求出最低造價;
(2)若要求網箱的長不超過15米,寬不超過12米,則當網箱的長和寬各為多少米時,可使總造價最低?(結果精確到0.01米)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)時取得極小值.
(1)求實數(shù)的值;
(2)是否存在區(qū)間,使得在該區(qū)間上的值域為?若存在,求出,的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某風景區(qū)在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)

(1)設(弧度),將綠化帶總長度表示為的函數(shù);
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)fx)定義在(0,+∞)上,f(1)=0,導函數(shù),.
(1)求的單調區(qū)間和最小值;
(2)討論的大小關系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<對任意x>0成立?若存在,求出x0的取值范圍;若不存在請說明理由.

查看答案和解析>>

同步練習冊答案