已知p:
x+2
10-x
≥0,q:x2-2x+1-a 2≤0,其中a>0,且p是q的必要條件,求實(shí)數(shù)a的取值范圍.
考點(diǎn):必要條件、充分條件與充要條件的判斷
專題:簡(jiǎn)易邏輯
分析:分別解不等式,求出p,q的范圍,得不等式組,從而求出a的范圍.
解答: 解:∵p:
x+2
10-x
≥0,∴p:-2≤x<10,
∵q:x2-2x+1-a 2≤0,∴1-a≤x≤1+a,
∵p是q的必要條件,∴q⊆p,
1-a≥-2
1+a<10
,解得:a≤3,
∴實(shí)數(shù)a的取值范圍是(-∞,3].
點(diǎn)評(píng):本題考查了充分必要條件,理解并牢記判斷方法是解題的關(guān)鍵,本題屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=x3+ax2+3x-9在x=-3處取得極值.
(1)求a值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
2sinθ-cosθ
3sinθ+2cosθ
=-
5
3
,則tanθ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)
1-2sin4cos4
的結(jié)果是( 。
A、sin4+cos4
B、sin4-cos4
C、cos4-sin4
D、-sin4-cos4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3+bi
1-i
=a+bi(a,b為實(shí)數(shù),i為虛數(shù)單位),則a+b=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)不透明的口袋中裝有形狀相同的紅球、黃球和藍(lán)球,若摸出一球?yàn)榧t球的概率為
1
5
,黃球的概率為
1
4
,袋中紅球有4個(gè),則袋中藍(lán)球的個(gè)數(shù)為( 。
A、5個(gè)B、11個(gè)C、4個(gè)D、9個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}中,如果存在非零常數(shù)T,使得an+T=an對(duì)于任意的非零自然數(shù)n均成立,那么就稱數(shù)列{an}為周期數(shù)列,其中T叫做數(shù)列{an}的周期.已知數(shù)列{xn}滿足xn+1=|xn-xn-1|(n≥2),如果x1=1,x2=a(a∈R,a≠0),當(dāng)數(shù)列{xn}的周期最小時(shí),求該數(shù)列前2007項(xiàng)和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):
sinA+sin2A
1+cosA+cos2A
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α是銳角,且sin(
π
2
+α)=
3
4
,則sin(
α
2
+π)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案