11.已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002,…,800進(jìn)行編號.
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76
63 01 63 78 59  16 95 56 67 19  98 10 50 71 75  12 86 73 58 07  44 39 52 38 79
33 21 12 34 29 78 64 56 07 82  52 42 07 44 38  15 51 00 13 42  99 66 02 79 54
(2)抽取的100人的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?br />成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42
①若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
 人數(shù) 數(shù)學(xué)
 優(yōu)秀 良好 及格
 地理 優(yōu)秀 7 20 5
 良好 9 18 6
 及格 a 4 b
②在地理成績及格的學(xué)生中,已知a≥11,b≥7,求數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

分析 (1)從第8行第7列的數(shù)開始向右讀,利用隨機(jī)數(shù)法能求出最先檢查的3個人的編號.
(2)①由題意得$\frac{7+9+a}{100}=30%$,由此能求出a,b的值..
②a+b=31,a≥11,b≥7,由此利用列舉法能求出數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率.

解答 解:(1)從第8行第7列的數(shù)開始向右讀,最先檢查的3個人的編號分別為:785,667,199.
(2)①$\frac{7+9+a}{100}=30%$,解得a=14,
∴b=100-30-(20+18+4)-(5+6)=17.
②a+b=100-(7+20+5)-(9+18+6)-4=31,
∵a≥11,b≥7,∴基本事件(a,b)的總數(shù)n=14,分別為:
(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),
(18,13),(19,12),(20,21),(21,10),(22,9(,(23,8),(24,7).
設(shè)a≥11,b≥7,數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少為事件A,a+5<b.
事件A包括:(11,20),(12,19),共2個基本事件,
∴數(shù)學(xué)成績優(yōu)秀的人數(shù)比及格的人數(shù)少的概率為P(A)=$\frac{2}{14}=\frac{1}{7}$.

點(diǎn)評 本題考查概率的求法,考查隨機(jī)數(shù)法、古典概型、列舉法等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在(0,+∞)上的函數(shù)$f(x)=\frac{1}{2}{x^2}+2ax,g(x)=3{a^2}lnx+b$,其中a>0.設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.則b的最大值為( 。
A.$\frac{3}{2}{e^2}$B.$\frac{3}{2}{e^{\frac{2}{3}}}$C.$\frac{2}{3}{e^{\frac{2}{3}}}$D.$\frac{1}{3}{e^{\frac{1}{3}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖1,直角梯形ABCD,AD∥BC,∠BAD=90°,EF∥AB,將四邊形CDFE沿EF折起,使DF⊥AF,BD與平面ABEF所成角為45°,DF=2CE=2,AB=$\sqrt{2}$,如圖2

(1)求證:AE⊥平面BDF
(2)設(shè)$\overrightarrow{AM}$=λ$\overrightarrow{AF}$,λ∈[0,1],是否存在符合條件的點(diǎn)M,使得C-BD-M為直二面角,若存在,求出相應(yīng)的λ值,否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3-3x2-9x+1(x∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若f(x)-2a+1≥0對?x∈[-2,4]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知命題p:t=π,命題$q:\int_0^t{sinxdx=1}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i是虛數(shù)單位,則($\frac{1+i}{1-i}$)2017+$\frac{1}{i}$=(  )
A.0B.1C.iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=sin x+$\frac{1}{x}$+a,x∈[-5π,0)∪(0,5π].記函數(shù)f(x)的最大值為M,最小值為m,若M+m=20,則實(shí)數(shù)a的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)在區(qū)間[-$\frac{9}{4}$,$\frac{3}{4}$]上的圖象交于A,B,C三點(diǎn),則△ABC的面積是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\frac{5\sqrt{2}}{4}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則|2$\overrightarrow{a}$-3$\overrightarrow$|=$\sqrt{61}$.

查看答案和解析>>

同步練習(xí)冊答案