已知x,y∈(0,+∞),x+y-3=0,若
1
x
+
m
y
(m>0)的最小值為3,則m的值為( 。
A、3B、4C、5D、6
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用“乘1法”和基本不等式的性質(zhì)即可得出.
解答: 解:∵x,y∈(0,+∞),x+y-3=0,m>0.
1
x
+
m
y
=
1
3
(x+y)(
1
x
+
m
y
)
=
1
3
(1+m+
y
x
+
mx
y
)≥
1
3
(1+m+2
y
x
mx
y
)=
1
3
(1+m+2
m
),當(dāng)且僅當(dāng)y=
m
x,x+y=3時取等號.
又∵
1
x
+
m
y
(m>0)的最小值為3,
1
3
(1+m+2
m
)=3.解得m=4.
即當(dāng)且僅當(dāng)y=2x=2時取等號.
故選:B.
點評:本題考查了“乘1法”和基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,
sinA
a
=
3
cosB
b

(Ⅰ)求角B的值;
(Ⅱ)如果b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

loga
3
4
<1
,則a的取值范圍是( 。
A、(0,
3
4
)
B、(
3
4
,+∞)
C、(
3
4
,1)
D、(0,
3
4
)
∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的圖象如圖所示,則f′(x)的圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+
m
x
,且此函數(shù)圖象過點(1,5).
(1)求實數(shù)m的值;
(2)判斷f(x)奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖中的算法,其功能是( 。
A、將a,b,c 由小到大排序
B、將a,b,c 由大到小排序
C、輸出a,b,c 中的最大值
D、輸出a,b,c 中的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x2+1
-ax2
在[0,+∞)上單調(diào)遞減,則實數(shù)a的取值范圍是:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果奇函數(shù)f(x)在區(qū)間[1,5]上是減函數(shù),且最小值3,那么f(x)在區(qū)間[-5,-1]上是( 。
A、增函數(shù)且最小值為3
B、增函數(shù)最大值為3
C、減函數(shù)且最小值為-3
D、減函數(shù)且最大值為-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,E、F分別是CC1、BB1的中點,求證:平面DEB1∥平面ACF.

查看答案和解析>>

同步練習(xí)冊答案