14.設(shè)函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x-ex,則f'(1)=0.

分析 由題設(shè)知,可先用換元法求出f(x)的解析式,再求出它的導(dǎo)數(shù),從而求出f′(1).

解答 解:函數(shù)f(x)在(0,+∞)內(nèi)可導(dǎo),且f(ex)=x-ex,
令ex=t,則x=lnt,故有f(t)=lnt-t,即f(x)=lnx-x,
∴f′(x)=$\frac{1}{x}$-1,
故f′(1)=1-1=0.
故答案為:0.

點(diǎn)評(píng) 本題考查了求導(dǎo)的運(yùn)算以及換元法求外層函數(shù)的解析式,屬于基本題型,運(yùn)算型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.在正四棱柱ABCD-A1B1C1D1中,AB=$\sqrt{2}$,AA1=2,設(shè)四棱柱的外接球的球心為O,動(dòng)點(diǎn)P在正方形ABCD的邊上,射線OP交球O的表面于點(diǎn)M,現(xiàn)點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A運(yùn)動(dòng)一次,則點(diǎn)M經(jīng)過(guò)的路徑長(zhǎng)為( 。
A.$\frac{4\sqrt{2}π}{3}$B.2$\sqrt{2}$πC.$\frac{8\sqrt{2}π}{3}$D.4$\sqrt{2}$π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若函數(shù)f(x)=ax3+b(a,b∈R)是R上的奇函數(shù),則  ( 。
A.a∈R,b=0B.a∈R,b=1C.a=0,b∈RD.a=1,b∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.從7本不同的書(shū)中選出4本,分別發(fā)給4名學(xué)生,每人一本.已知其中A、B兩本書(shū)不能發(fā)給學(xué)生丙,則不同的分配方法有(  )
A.720B.600C.480D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若a=50.2,b=logπ3,c=log50.2,則( 。
A.b>c>aB.b>a>cC.a>b>cD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知角α的終邊上一點(diǎn)P的坐標(biāo)為(${\sqrt{3}$,-1),則角α的最小正值為(  )
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{5π}{3}$D.$\frac{11π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知α,β是銳角,tanα,tanβ是方程x2-5x+6=0的兩根,則α+β的值為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知定義在R上的連續(xù)函數(shù)g(x)滿足:①當(dāng)x>0時(shí),g′(x)>0恒成立(g′(x)為函數(shù)g(x)的導(dǎo)函數(shù));②對(duì)任意的x∈R都有g(shù)(x)=g(-x),又函數(shù)f(x)滿足:對(duì)任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.當(dāng)$x∈[-\sqrt{3},\sqrt{3}]$時(shí),f(x)=x3-3x.若關(guān)于x的不等式g[f(x)]≤g(a2-a+2)對(duì)?x∈[-$\sqrt{3}$,$\frac{3}{2}+2\sqrt{3}$]恒成立,則a的取值范圍是( 。
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為了對(duì)某研究性課題進(jìn)行研究,用分層抽樣的方法從某校高中各年級(jí)中抽取若干名學(xué)生組成研究小組,數(shù)據(jù)見(jiàn)表:
 年級(jí) 相關(guān)人數(shù)抽取人數(shù) 
 高一 36 x
 高二 54 3
 高三 18 y
(Ⅰ)求表中x,y的值;
(Ⅱ)若從高二、高三抽取的人中任選2人作專(zhuān)題發(fā)言,求這2人都來(lái)自高二的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案