5.若函數(shù)f(x)=ax3+b(a,b∈R)是R上的奇函數(shù),則  (  )
A.a∈R,b=0B.a∈R,b=1C.a=0,b∈RD.a=1,b∈R

分析 根據(jù)函數(shù)奇偶性的性質(zhì)和定義建立方程進行求解即可.

解答 解:若函數(shù)f(x)=ax3+b(a,b∈R)是R上的奇函數(shù),
則f(-x)=-f(x),
即-ax3+b=-ax3-b,
則b=-b,a任意,
則a∈R,b=0,
故選:A

點評 本題主要考查函數(shù)奇偶性的定義的應用,根據(jù)條件建立方程關(guān)系是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.如圖所示,在三棱柱ABC-A1B1C1中,AA1⊥底面A1B1C1,∠ACB=90°,$AC=\sqrt{2},BC=C{C_1}=1,P$是BC1上一動點,則A1P+PC的最小值是$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=3|x+5|-2|x+3|,數(shù)列a1,a2,…,an…,滿足an+1=f(an),n∈N*,若要使a1,a2,…an,…成等差數(shù)列.則a1的取值范圍{-9}∪[-3,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=$\frac{x^2}{2}$-alnx(a≠0).
(1)討論f(x)的單調(diào)性和極值;
(2)證明:當a>0時,若f(x)存在零點,則f(x)在區(qū)間(1,$\sqrt{e}$]上僅有一個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如表:
零件的個數(shù)x(個)2345
加工的時間y(小時)2.5344.5
(Ⅰ)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;兩個變量y與x的回歸模型中,分別選擇了2個不同模型,模型①:$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,模型②:$\stackrel{∧}{y}$=$\stackrel{∧}{c}$$\sqrt{x}$+$\stackrel{∧}6mkgiuc$,求$\stackrel{∧}{a}$,$\stackrel{∧}$,$\stackrel{∧}{c}$,$\stackrel{∧}imqk26w$(精確到0.1);
(Ⅱ)比較兩個不同的模型的相關(guān)指數(shù)R12,R22,指出哪種模型的擬合效果最好,并說明理由.
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b\overline{x}}$,其中$\overline{x}$,$\overline{y}$為樣本平均數(shù),令z=$\sqrt{x}$,則$\sum_{i=1}^{4}$ziyi=26.8,$\overline{z}$=1.8,$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{5}$≈2.2,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\stackrel{∧}{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.計算x+y+z=6的正整數(shù)解有多少組?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如果執(zhí)行如圖所示的框圖,輸入N=5,則輸出的S等于(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.設函數(shù)f(x)在(0,+∞)內(nèi)可導,且f(ex)=x-ex,則f'(1)=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且b=acosc+$\frac{{\sqrt{3}}}{3}$csinA.
(Ⅰ)求角A的大小;
(Ⅱ)當a=3時,求△ABC周長的取值范圍.

查看答案和解析>>

同步練習冊答案