【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.

(Ⅰ)由折線圖看出,可用線性回歸模型擬合的關(guān)系,請用相關(guān)系數(shù)加以說明;

(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.

參考數(shù)據(jù): , , ,

參考公式:相關(guān)系數(shù)

回歸方程, ,

本題中斜率和截距的最小二乘估計公式分別為:

【答案】(Ⅰ)見解析;(Ⅱ) 1.82億噸.

【解析】試題分析:(1)根據(jù)圖形可知散點大致分布在一條直線附近,于是先求相關(guān)系數(shù),在用線性回歸方程模擬即可(2)根據(jù)回歸方程公式求出回歸方程將2016年對應(yīng)的代入回歸方程得,

(Ⅰ)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得

,

,

因為的相關(guān)系數(shù)近似為0.99,說明的線性相關(guān)程度相當高,從而可以用線性回歸模型擬合的關(guān)系.

(Ⅱ)由及(Ⅰ)得,

所以, 關(guān)于的回歸方程為

將2016年對應(yīng)的代入回歸方程得,

所以預(yù)測2016年我國生活垃圾無害化處理量約為1.82億噸.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1求曲線的普通方程;

2經(jīng)過點平面直角坐標系中點作直線交曲線兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:

組號

1

2

3

4

5

溫差

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;

2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?

(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時,求的單調(diào)區(qū)間;

2設(shè),是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.

3設(shè)函數(shù)有兩個極值點,若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市2010年至2016年新開樓盤的平均銷售價格(單位:千元/平米)的統(tǒng)計數(shù)據(jù)如下表:

年份

2010

2011

2012

2013

2014

2015

2016

年份代號x

1

2

3

4

5

6

7

銷售價格y

3

3.4

3.7

4.5

4.9

5.3

6

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,分析2010年至2016年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2018年新開樓盤的平均銷售價格.

附:參考數(shù)據(jù)及公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)定義域為,且對任意實數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域為,函數(shù)對任意恒成立,且對任意實數(shù),有,則稱為“對數(shù)形函數(shù)” .

(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;

(2)若是“對數(shù)形函數(shù)”,求實數(shù)的取值范圍;

(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),為自然對數(shù)的底數(shù).

1討論的單調(diào)性;

2若函數(shù)的圖象與直線交于兩點,線段中點的橫坐標為,證明: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其中

(Ⅰ)求的單調(diào)區(qū)間;

(Ⅱ)若存在極值點,且,其中,求證: ;

(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,小明同學(xué)從中任取3道題解答.

(Ⅰ)求小明同學(xué)至少取到1道乙類題的概率;

(Ⅱ)已知所取的3道題中有2道甲類題,1道乙類題.若小明同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.求小明同學(xué)至少答對2道題的概率.

查看答案和解析>>

同步練習(xí)冊答案