【題目】如圖是我國2008年至2014年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(Ⅱ)建立關(guān)于的回歸方程(系數(shù)精確到0.01),預(yù)測2016年我國生活垃圾無害化處理量.
參考數(shù)據(jù): , , , .
參考公式:相關(guān)系數(shù),
回歸方程, ,
本題中斜率和截距的最小二乘估計公式分別為: , .
【答案】(Ⅰ)見解析;(Ⅱ) 1.82億噸.
【解析】試題分析:(1)根據(jù)圖形可知散點大致分布在一條直線附近,于是先求相關(guān)系數(shù),在用線性回歸方程模擬即可(2)根據(jù)回歸方程公式求出回歸方程,將2016年對應(yīng)的代入回歸方程得,
(Ⅰ)由折線圖中的數(shù)據(jù)和附注中的參考數(shù)據(jù)得
, , ,
,
∴.
因為與的相關(guān)系數(shù)近似為0.99,說明與的線性相關(guān)程度相當高,從而可以用線性回歸模型擬合與的關(guān)系.
(Ⅱ)由及(Ⅰ)得,
.
所以, 關(guān)于的回歸方程為.
將2016年對應(yīng)的代入回歸方程得,
所以預(yù)測2016年我國生活垃圾無害化處理量約為1.82億噸.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(平面直角坐標系中點)作直線交曲線于兩點,若恰好為線段的三等分點,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調(diào)區(qū)間;
(2)設(shè),是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍.
(3)設(shè)函數(shù)有兩個極值點,且,若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市2010年至2016年新開樓盤的平均銷售價格(單位:千元/平米)的統(tǒng)計數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售價格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2010年至2016年該市新開樓盤平均銷售價格的變化情況,并預(yù)測該市2018年新開樓盤的平均銷售價格.
附:參考數(shù)據(jù)及公式: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)定義域為,且對任意實數(shù),有,則稱為“形函數(shù)”,若函數(shù)定義域為,函數(shù)對任意恒成立,且對任意實數(shù),有,則稱為“對數(shù)形函數(shù)” .
(1)試判斷函數(shù)是否為“形函數(shù)”,并說明理由;
(2)若是“對數(shù)形函數(shù)”,求實數(shù)的取值范圍;
(3)若是“形函數(shù)”,且滿足對任意,有,問是否為“對數(shù)形函數(shù)”?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),為自然對數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)的圖象與直線交于兩點,線段中點的橫坐標為,證明: 為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若存在極值點,且,其中,求證: ;
(Ⅲ)設(shè),函數(shù),求證: 在區(qū)間上最大值不小于.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有10道題,其中6道甲類題,4道乙類題,小明同學(xué)從中任取3道題解答.
(Ⅰ)求小明同學(xué)至少取到1道乙類題的概率;
(Ⅱ)已知所取的3道題中有2道甲類題,1道乙類題.若小明同學(xué)答對每道甲類題的概率都是,答對每道乙類題的概率都是,且各題答對與否相互獨立.求小明同學(xué)至少答對2道題的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com