【題目】已知O為△ABC的外心,且 . ①若∠C=90°,則λ+μ=;
②若∠ABC=60°,則λ+μ的最大值為 .
【答案】;
【解析】解:①若∠C=90°,則O是斜邊AB的中點,如圖①所示:
∴ = ,
∴λ= ,μ=0,
∴λ+μ= ;②設△ABC的外接圓半徑為1,以外接圓圓心為原點建立坐標系:
∵∠ABC=60°,∴AOC=120°,
設A(1,0),C(﹣ , ),B(x,y),
則 =(1﹣x,﹣y), =(﹣ ﹣x, ﹣y), =(﹣x,﹣y),
∵ ,
∴ ,解得 ,
∵B在圓x2+y2=1上,
∴( )2+( )2=(λ+μ﹣1)2 ,
∴λμ= ≤( )2 ,
∴ (λ+μ)2﹣ (λ+μ)+ ≥0,
解得λ+μ≤ 或λ+μ≥2,
∵B只能在優(yōu)弧 上,∴λ+μ≤ ,
即λ+μ得最大值為 .
所以答案是:(1) ,(2) .
【考點精析】利用平面向量的基本定理及其意義對題目進行判斷即可得到答案,需要熟知如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使.
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,與函數(shù)y=﹣e|x|的奇偶性相同,且在(﹣∞,0)上單調(diào)性也相同的是( )
A.
B.y=ln|x|
C.y=x3﹣3
D.y=﹣x2+2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=﹣x3+1+a( ≤x≤e,e是自然對數(shù)的底)與g(x)=3lnx的圖象上存在關于x軸對稱的點,則實數(shù)a的取值范圍是( )
A.[0,e3﹣4]
B.[0, +2]
C.[ +2,e3﹣4]
D.[e3﹣4,+∞)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,點F,G分別是線段PB,PD上的中點,E在PA上,且PA=3PE.
(Ⅰ)求證:BD∥平面EFG;
(Ⅱ)求直線AB與平面EFG的成角的正弦值;
(Ⅲ)請畫出平面EFG與四棱錐的表面的交線,并寫出作圖的步驟.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知{an}是等差數(shù)列,滿足a1=2,a4=14,數(shù)列{bn}滿足b1=1,b4=6,且{an﹣bn}是等比數(shù)列. (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)若n∈N* , 都有bn≤bk成立,求正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓E的右焦點與拋物線y2=4x的焦點重合,點M 在橢圓E上.
(1)求橢圓E的方程;
(2)設P(﹣4,0),直線y=kx+1與橢圓E交于A,B兩點,若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓W: (b>0)的一個焦點坐標為 .
(Ⅰ)求橢圓W的方程和離心率;
(Ⅱ)若橢圓W與y軸交于A,B兩點(A點在B點的上方),M是橢圓上異于A,B的任意一點,過點M作MN⊥y軸于N,E為線段MN的中點,直線AE與直線y=﹣1交于點C,G為線段BC的中點,O為坐標原點.求∠OEG的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)+1(ω>0,|φ|≤ ),其圖象與直線y=﹣1相鄰兩個交點的距離為π,若f(x)>1對x∈(﹣ , )恒成立,則φ的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長為2的菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCD,DE=2,M為線段BF上一點,且DM⊥平面ACE.
(1)求BM的長;
(2)求二面角A﹣DM﹣B的余弦值的大。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com